With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smar...With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.展开更多
Due to the rapid growth of online transactions on the Internet, authentication, non-repudiation and integrity are very essential security requirements for a secure transaction. To achieve these security goals, digital...Due to the rapid growth of online transactions on the Internet, authentication, non-repudiation and integrity are very essential security requirements for a secure transaction. To achieve these security goals, digital signature is the most efficient cryptographic primitive. Many authors have proposed this scheme and prove their security and evaluate the efficiency. In our paper, we present comprehensive study of conventional digital signature schemes based on RSA, DSA and ECDSA (Elliptic Curve Digital Signature Algorithm) and the improved version of these scheme.展开更多
This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (prim...This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (primitive element). Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols also provide digital signature/sender identification. Numeric illustrations are provided.展开更多
In multisignature schemes signers can sign either in a linear order or not in any specified order, but neither of them is adequate in some scenarios where require mixture using of orderless and ordered multisignature....In multisignature schemes signers can sign either in a linear order or not in any specified order, but neither of them is adequate in some scenarios where require mixture using of orderless and ordered multisignature. Most order-specified multisignatures specified the orders as linear ones. In this paper, we proposed an order-specified multisignature scheme based on DSA secure against active insider attack. To our knowledge, it is the first order-specified multisignature scheme based on DSA signature scheme, in which signers can sign in flexible order represented by series-parallel graphs. In the multisignature scheme verification to both signers and signing order are available. The security of the scheme is proved by reduce to an identification scheme that is proved have some concrete security. The running time of verifying a signature is comparable to previous schemes while the running time of multisignature generation and the space needed is less than those schemes.展开更多
A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic...A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Nos.62072074,62076054,62027827,62002047)the Sichuan Science and Technology Innovation Platform and Talent Plan(Nos.2020JDJQ0020,2022JDJQ0039)+2 种基金the Sichuan Science and Technology Support Plan(Nos.2020YFSY0010,2022YFQ0045,2022YFS0220,2023YFG0148,2021YFG0131)the YIBIN Science and Technology Support Plan(No.2021CG003)the Medico-Engineering Cooperation Funds from University of Electronic Science and Technology of China(Nos.ZYGX2021YGLH212,ZYGX2022YGRH012).
文摘With the continuous expansion of the Industrial Internet of Things(IIoT),more andmore organisations are placing large amounts of data in the cloud to reduce overheads.However,the channel between cloud servers and smart equipment is not trustworthy,so the issue of data authenticity needs to be addressed.The SM2 digital signature algorithm can provide an authentication mechanism for data to solve such problems.Unfortunately,it still suffers from the problem of key exposure.In order to address this concern,this study first introduces a key-insulated scheme,SM2-KI-SIGN,based on the SM2 algorithm.This scheme boasts strong key insulation and secure keyupdates.Our scheme uses the elliptic curve algorithm,which is not only more efficient but also more suitable for IIoT-cloud environments.Finally,the security proof of SM2-KI-SIGN is given under the Elliptic Curve Discrete Logarithm(ECDL)assumption in the random oracle.
文摘Due to the rapid growth of online transactions on the Internet, authentication, non-repudiation and integrity are very essential security requirements for a secure transaction. To achieve these security goals, digital signature is the most efficient cryptographic primitive. Many authors have proposed this scheme and prove their security and evaluate the efficiency. In our paper, we present comprehensive study of conventional digital signature schemes based on RSA, DSA and ECDSA (Elliptic Curve Digital Signature Algorithm) and the improved version of these scheme.
文摘This paper describes and compares a variety of algorithms for secure transmission of information via open communication channels based on the discrete logarithm problem that do not require search for a generator (primitive element). Modifications that simplify the cryptosystem are proposed, and, as a result, accelerate its performance. It is shown that hiding information via exponentiation is more efficient than other seemingly simpler protocols. Some of these protocols also provide digital signature/sender identification. Numeric illustrations are provided.
基金Supported by the National Natural Science Foundation ofChina (60403027)
文摘In multisignature schemes signers can sign either in a linear order or not in any specified order, but neither of them is adequate in some scenarios where require mixture using of orderless and ordered multisignature. Most order-specified multisignatures specified the orders as linear ones. In this paper, we proposed an order-specified multisignature scheme based on DSA secure against active insider attack. To our knowledge, it is the first order-specified multisignature scheme based on DSA signature scheme, in which signers can sign in flexible order represented by series-parallel graphs. In the multisignature scheme verification to both signers and signing order are available. The security of the scheme is proved by reduce to an identification scheme that is proved have some concrete security. The running time of verifying a signature is comparable to previous schemes while the running time of multisignature generation and the space needed is less than those schemes.
基金supported by the National Natural Science Foundation of China (60763009)the Science and Technology Key Project of the Ministry of Education of China (207089)Zhejiang Natural Science Foundation of Outstanding Youth Team Project (R1090138)
文摘A hyperelliptic curve digital signature algorithm (HECDSA) can be viewed as the hyperelliptic curve analogue of the standard digital signature algorithm (DSA). This article discusses divisor evaluations, the basic HECDSA, variants, two HECDSA equations and a 4-tuple HECDSA scheme, and puts forward a generalized equation for HECDSA. From this generalized equation, seven general HECDSA types are derived based on the efficiency requirements. Meanwhile, the securities of these general HECDSA types are analyzed in detail.
基金Supported by the National Natural Science Foundation of China under Grant No.60273089 (国家自然科学基金) the Natural Science Research Plan of Education Department of Shanxi Province of China under Grant No.00JK266 (陕西省教育厅自然科学研究 计划)