In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal w...In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.展开更多
In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let ...In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.展开更多
A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC...A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC)and the nonlinear disturbance observer(NDO).DSC technique provides the ability to overcome the″explosion of complexity″problem in backstepping control.NDO is adopted to observe the uncertainties in nonlinear flight dynamic system.It has been proved that the proposed design method can guarantee uniformly ultimately boundedness of all the signals in the closed-loop system by Lyapunov stability theorem.Finally,simulation results show that the proposed controller provides better performance than the traditional nonlinear controller.展开更多
Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missi...Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.展开更多
针对测控系统中常用的OPC、Modbus及第三方自定义协议通信,介绍了基于LabVIEW以上通信协议的实现方法,提出并实现了把原本分散的各种通信方式集成到NI LabVIEW的DSC(Datalogging and Supervisory Control Module)平台,统一运行于后台的...针对测控系统中常用的OPC、Modbus及第三方自定义协议通信,介绍了基于LabVIEW以上通信协议的实现方法,提出并实现了把原本分散的各种通信方式集成到NI LabVIEW的DSC(Datalogging and Supervisory Control Module)平台,统一运行于后台的方案。实践表明,此方案不但简化测控系统软件的架构,而且提高了系统通信的效率和稳定性。展开更多
针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统,提出了一种鲁棒自适应神经网络控制算法.本算法采用RBF神经网络(Radial based function neural network,RBFNN)逼近模型不确定性,外界干扰和建模误差采用非线性阻尼...针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统,提出了一种鲁棒自适应神经网络控制算法.本算法采用RBF神经网络(Radial based function neural network,RBFNN)逼近模型不确定性,外界干扰和建模误差采用非线性阻尼项进行补偿,将动态面控制(Dynamic surface control,DSC)与后推方法结合,消除了反推法的计算膨胀问题,降低了控制器的复杂性;尤其是采用Nussbaum函数处理系统中方向未知的不确定虚拟控制增益函数,不仅可以避免可能存在的控制器奇异值问题,而且还能使得整个系统的在线学习参数显著减少,与DSC方法优点结合,使得控制算法的计算量大为减少,便于计算机实现.稳定性分析证明了所得闭环系统是半全局一致最终有界(Semi-global uniformly ultimately bounded,SGUUB)的,并且跟踪误差可以收敛到原点的一个较小邻域.最后,计算机仿真结果表明了本文所提出控制器的有效性.展开更多
基金supported in part by the National Natural Science Foundation of China (61773051,61773072,61761166011)the Fundamental Research Fund for the Central Universities (2016RC021,2017JBZ003)
文摘In this paper, we propose an adaptive fuzzy dynamic surface control(DSC) scheme for single-link flexible-joint robotic systems with input saturation. A smooth function is utilized with the mean-value theorem to deal with the difficulties associated with input saturation. An adaptive DSC design with an auxiliary first-order filter is used to solve the "explosion of complexity"problem. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, and the tracking error eventually converges to a small neighborhood around zero. The main advantage of the proposed method is that only one adaptation parameter needs to be updated,which reduces the computational burden significantly. Simulation results demonstrate the feasibility of the proposed scheme and the comparison results show that the improved DSC method can reduce the computational burden by almost two thirds in comparison with the standard DSC method.
基金supported by National Natural Science Foundation of China(61403013)the Aero-Science Foundation of China(2015ZA51009)
文摘In this paper, an output-feedback tracking controller is proposed for a class of nonlinear non-minimum phase systems.To keep the unstable internal dynamics bounded, the method of output redefinition is applied to let the stability of the internal dynamics depend on that of redefined output, thus we only need to consider the new external dynamics rather than internal dynamics in the process of designing control law. To overcome the explosion of complexity problem in traditional backstepping design, the dynamic surface control(DSC) method is firstly used to deal with the problem of tracking control for the nonlinear non-minimum phase systems. The proposed outputfeedback DSC controller not only forces the system output to asymptotically track the desired trajectory, but also drives the unstable internal dynamics to follow its corresponding bounded and causal ideal internal dynamics, which is solved via stable system center method. Simulation results illustrate the validity of the proposed output-feedback DSC controller.
基金supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology Zhejiang University China(No.ICT1401)Shanghai Leading Academic Discipline Project(No.J50103)
文摘A new robust control method of a nonlinear flight dynamic system with aerodynamic coefficients and external disturbance has been proposed.The proposed control system is a combination of the dynamic surface control(DSC)and the nonlinear disturbance observer(NDO).DSC technique provides the ability to overcome the″explosion of complexity″problem in backstepping control.NDO is adopted to observe the uncertainties in nonlinear flight dynamic system.It has been proved that the proposed design method can guarantee uniformly ultimately boundedness of all the signals in the closed-loop system by Lyapunov stability theorem.Finally,simulation results show that the proposed controller provides better performance than the traditional nonlinear controller.
基金supported by the Aerospace Science and Technology Innovation Foundation of China(CAST2014CH01)the Aeronautical Science Foundation of China(2015ZC560007)+1 种基金the Jiangxi Natural Science Foundation of China(20151BBE50026)National Natural Science Foundation of China(11462015)
基金supported by Joint Fund of the Ministry of Education f or Equipment Pre-research (6141A20223)。
文摘Since the dynamical system and control system of the missile are typically nonlinear, an effective acceleration tracking autopilot is designed using the dynamic surface control(DSC)technique in order to make the missile control system more robust despite the uncertainty of the dynamical parameters and the presence of disturbances. Firstly, the nonlinear mathematical model of the tail-controlled missile is decomposed into slow acceleration dynamics and fast pitch rate dynamics based on the naturally existing time scale separation. Secondly, the controller based on DSC is designed after obtaining the linear dynamics characteristics of the slow and fast subsystems. An extended state observer is used to detect the uncertainty of the system state variables and aerodynamic parameters to achieve the compensation of the control law. The closed-loop stability of the controller is derived and rigorously analyzed. Finally, the effectiveness and robustness of the design is verified by Monte Carlo simulation considering different initial conditions and parameter uptake. Simulation results illustrate that the missile autopilot based DSC controller achieves better performance and robustness than the other two well-known autopilots.The method proposed in this paper is applied to the design of a missile autopilot, and the results show that the acceleration tracking autopilot based on the DSC controller can ensure accurate tracking of the required commands and has better performance.
文摘针对测控系统中常用的OPC、Modbus及第三方自定义协议通信,介绍了基于LabVIEW以上通信协议的实现方法,提出并实现了把原本分散的各种通信方式集成到NI LabVIEW的DSC(Datalogging and Supervisory Control Module)平台,统一运行于后台的方案。实践表明,此方案不但简化测控系统软件的架构,而且提高了系统通信的效率和稳定性。
文摘针对一类具有不确定系统函数和方向未知的不确定增益函数的非线性系统,提出了一种鲁棒自适应神经网络控制算法.本算法采用RBF神经网络(Radial based function neural network,RBFNN)逼近模型不确定性,外界干扰和建模误差采用非线性阻尼项进行补偿,将动态面控制(Dynamic surface control,DSC)与后推方法结合,消除了反推法的计算膨胀问题,降低了控制器的复杂性;尤其是采用Nussbaum函数处理系统中方向未知的不确定虚拟控制增益函数,不仅可以避免可能存在的控制器奇异值问题,而且还能使得整个系统的在线学习参数显著减少,与DSC方法优点结合,使得控制算法的计算量大为减少,便于计算机实现.稳定性分析证明了所得闭环系统是半全局一致最终有界(Semi-global uniformly ultimately bounded,SGUUB)的,并且跟踪误差可以收敛到原点的一个较小邻域.最后,计算机仿真结果表明了本文所提出控制器的有效性.