The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrai...The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.展开更多
The whole procedures of underwater digital terrain model (DTM) were presented by building with the global positioning system (GPS) aided high-resolution profile-scan sonar images.The algorithm regards the digital imag...The whole procedures of underwater digital terrain model (DTM) were presented by building with the global positioning system (GPS) aided high-resolution profile-scan sonar images.The algorithm regards the digital image scanned in a cycle as the raw data.First the label rings are detected with the improved Hough transform (HT) method and followed by curve-fitting for accurate location;then the most probable window for each ping is detected with weighted neighborhood gray-level co-occurrence matrix;and finally the DTM is built by integrating the GPS data with sonar data for 3D visualization.The case of an underwater trench for immersed tube road tunnel is illustrated.展开更多
The purpose of this work is to analyze the feasibility of using the wavelet transform in the edge detection of digital terrain models (DTM) obtained by Laser Scanner. The Haar wavelet transform and the edge detection ...The purpose of this work is to analyze the feasibility of using the wavelet transform in the edge detection of digital terrain models (DTM) obtained by Laser Scanner. The Haar wavelet transform and the edge detection method called Wavelet Transform Modulus Maxima (WTMM), both implemented in Matlab language, were used. In order to validate and verify the efficiency of WTMM, the edge detection of the same DTM was performed by the Roberts, Sobel-Feldman and Canny methods, chosen due to the wide use in the scientific community in the area of Image Processing and Remote Sensing. The comparison of the results showed superior performance of WTMM in terms of processing time.展开更多
In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different typ...In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different types of terrain. In this paper, an algorithm to generate random terrain data is given.展开更多
Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data...Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.展开更多
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availab...Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.展开更多
In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classificatio...In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classification and scale analysis of an isolated obstacle threatening flight safety of terrain-following guidance are made. When the interval of vertical-and cross-sections on DSM is 12. 5 m, the proportion of isolated obstacles to the data amount of DSM model to be loaded is optimal. The main factors influencing the lowest flying height in terrain-following guidance are analyzed, and a primary safe criterion of the lowest flying height over DSM model is proposed. According to their test errors, the lowest flying height over 1:10 000 DSM model can reach 40. 5 m^45. 0 m in terrain-following guidance. It is shown from the simulation results of a typical urban district that the proposed models and methods are reasonable and feasible.展开更多
Different methods have been deployed to compute the geoid, the altimetry reference for surveying applications. One of their main goals is to allow the use of GPS (Global Positioning System) or GNSS heights, which are ...Different methods have been deployed to compute the geoid, the altimetry reference for surveying applications. One of their main goals is to allow the use of GPS (Global Positioning System) or GNSS heights, which are related to an ellipsoid and therefore must be corrected. Some of these methods are accurate but quite heavy as developed by [1], but one of them is easy to use while giving very good results in a local system: some mm for a 10 × 10 km2 area developed by [2] [3]. In our study, we have used software called “Géoide Program”, previously used at the CERN in Switzerland and set up by [4], which they complete this software allowing a parameterization of general data to provide results in a general system. Then, tests have shown the way to optimize computations without any loss of accuracy. For our computations we use gridded of geodetic heights, from Lambert or WGS 84 datum’s, DTM (Digital Terrain Model) and leveled GPS points. To obtain these results, components of the vertical deflection are computed for every point on the grid, deduced from the attraction exerted by the mass Model. Then, geodetic heights are computed by an incremental way from an arbitrary reference. Once the calculation is performed, the geodetic height of any point located in the modelled area can be interpolated. The variations of parameters (mainly size and increments of the DTM and of the modeled area, and ground density) have shown that they do not play a significant role although DTM must be large enough to take into account an important area around a selected zone. However, the choice of the levelled GPS points is primordial. We have performed tests with real data concerning Mejez El Bab zone, in north of Tunisia. Nevertheless, for a few hundreds of square kilometers area, and just by using a DTM and a few levelled GPS points, this method provides results that look extremely promising, at least for surveying activities, as it shows a good possibility to use GPS for coarse precision levelling, and as DTM are now widely available in many countries.展开更多
基金Supported by the National Natural Science Foundation of China (No.40671158), the National 863 Program of China(No.2006AA12Z224) and the Program for New Century Excellent Talents in University (No.NCET-05-0626).
文摘The problem of taking an unorganized point cloud in 3D space and fitting a polyhedral surface to those points is both important and difficult. Aiming at increasing applications of full three dimensional digital terrain surface modeling, a new algorithm for the automatic generation of three dimensional triangulated irregular network from a point cloud is pro- posed. Based on the local topological consistency test, a combined algorithm of constrained 3D Delaunay triangulation and region-growing is extended to ensure topologically correct reconstruction. This paper also introduced an efficient neighbor- ing triangle location method by making full use of the surface normal information. Experimental results prove that this algo- rithm can efficiently obtain the most reasonable reconstructed mesh surface with arbitrary topology, wherein the automati- cally reconstructed surface has only small topological difference from the true surface. This algorithm has potential applica- tions to virtual environments, computer vision, and so on.
文摘The whole procedures of underwater digital terrain model (DTM) were presented by building with the global positioning system (GPS) aided high-resolution profile-scan sonar images.The algorithm regards the digital image scanned in a cycle as the raw data.First the label rings are detected with the improved Hough transform (HT) method and followed by curve-fitting for accurate location;then the most probable window for each ping is detected with weighted neighborhood gray-level co-occurrence matrix;and finally the DTM is built by integrating the GPS data with sonar data for 3D visualization.The case of an underwater trench for immersed tube road tunnel is illustrated.
文摘The purpose of this work is to analyze the feasibility of using the wavelet transform in the edge detection of digital terrain models (DTM) obtained by Laser Scanner. The Haar wavelet transform and the edge detection method called Wavelet Transform Modulus Maxima (WTMM), both implemented in Matlab language, were used. In order to validate and verify the efficiency of WTMM, the edge detection of the same DTM was performed by the Roberts, Sobel-Feldman and Canny methods, chosen due to the wide use in the scientific community in the area of Image Processing and Remote Sensing. The comparison of the results showed superior performance of WTMM in terms of processing time.
文摘In order to slove a realistic test problem of TF/TA algorithm, it is necessary to make a discrete terrain model. The model has adjustable roughness parameters so as to test the optimization procedure for different types of terrain. In this paper, an algorithm to generate random terrain data is given.
文摘Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.
基金supported by the National Natural Science Foundation of China(Grant Nos.41471316,41401456)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions-PAPD(Grant No.164320H101)+1 种基金Major University Science Research Project of Jiangsu Province(Grant No.13KJA170001)the financial support provided by the PhD Scholarship from Eurasic Pacific Uninet for collaboration research in Austria
文摘Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process.
基金This project was supported by the National Natural Science Foundation of China (60072009).
文摘In modern terrain-following guidance it is an important index for flight vehicle to cruise about safely and normally. On the basis of a constructing method of digital surface model (DSM), the definition, classification and scale analysis of an isolated obstacle threatening flight safety of terrain-following guidance are made. When the interval of vertical-and cross-sections on DSM is 12. 5 m, the proportion of isolated obstacles to the data amount of DSM model to be loaded is optimal. The main factors influencing the lowest flying height in terrain-following guidance are analyzed, and a primary safe criterion of the lowest flying height over DSM model is proposed. According to their test errors, the lowest flying height over 1:10 000 DSM model can reach 40. 5 m^45. 0 m in terrain-following guidance. It is shown from the simulation results of a typical urban district that the proposed models and methods are reasonable and feasible.
文摘Different methods have been deployed to compute the geoid, the altimetry reference for surveying applications. One of their main goals is to allow the use of GPS (Global Positioning System) or GNSS heights, which are related to an ellipsoid and therefore must be corrected. Some of these methods are accurate but quite heavy as developed by [1], but one of them is easy to use while giving very good results in a local system: some mm for a 10 × 10 km2 area developed by [2] [3]. In our study, we have used software called “Géoide Program”, previously used at the CERN in Switzerland and set up by [4], which they complete this software allowing a parameterization of general data to provide results in a general system. Then, tests have shown the way to optimize computations without any loss of accuracy. For our computations we use gridded of geodetic heights, from Lambert or WGS 84 datum’s, DTM (Digital Terrain Model) and leveled GPS points. To obtain these results, components of the vertical deflection are computed for every point on the grid, deduced from the attraction exerted by the mass Model. Then, geodetic heights are computed by an incremental way from an arbitrary reference. Once the calculation is performed, the geodetic height of any point located in the modelled area can be interpolated. The variations of parameters (mainly size and increments of the DTM and of the modeled area, and ground density) have shown that they do not play a significant role although DTM must be large enough to take into account an important area around a selected zone. However, the choice of the levelled GPS points is primordial. We have performed tests with real data concerning Mejez El Bab zone, in north of Tunisia. Nevertheless, for a few hundreds of square kilometers area, and just by using a DTM and a few levelled GPS points, this method provides results that look extremely promising, at least for surveying activities, as it shows a good possibility to use GPS for coarse precision levelling, and as DTM are now widely available in many countries.