Seismic waveform clustering is a useful technique for lithologic identification and reservoir characterization.The current seismic waveform clustering algorithms are predominantly based on a fixed time window,which is...Seismic waveform clustering is a useful technique for lithologic identification and reservoir characterization.The current seismic waveform clustering algorithms are predominantly based on a fixed time window,which is applicable for layers of stable thickness.When a layer exhibits variable thickness in the seismic response,a fixed time window cannot provide comprehensive geologic information for the target interval.Therefore,we propose a novel approach for a waveform clustering workfl ow based on a variable time window to enable broader applications.The dynamic time warping(DTW)distance is fi rst introduced to effectively measure the similarities between seismic waveforms with various lengths.We develop a DTW distance-based clustering algorithm to extract centroids,and we then determine the class of all seismic traces according to the DTW distances from centroids.To greatly reduce the computational complexity in seismic data application,we propose a superpixel-based seismic data thinning approach.We further propose an integrated workfl ow that can be applied to practical seismic data by incorporating the DTW distance-based clustering and seismic data thinning algorithms.We evaluated the performance by applying the proposed workfl ow to synthetic seismograms and seismic survey data.Compared with the the traditional waveform clustering method,the synthetic seismogram results demonstrate the enhanced capability of the proposed workfl ow to detect boundaries of diff erent lithologies or lithologic associations with variable thickness.Results from a practical application show that the planar map of seismic waveform clustering obtained by the proposed workfl ow correlates well with the geological characteristics of wells in terms of reservoir thickness.展开更多
The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are ...The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are missing (inconsistency in the length of the sequences), the only way is to delete the longer sequences or to fill the shorter sequences. Therefore, some uncertainty is introduced. To solve this problem, by introducing three-dimensional grey incidence degree (3D-GID), a novel GID based on the multidimensional dynamic time warping distance (MDDTW distance-GID) is proposed. On the basis of it, the corresponding grey incidence clustering (MDDTW distance-GIC) method is constructed. It not only has the simpler computation process, but also can be applied to the incidence comparison between uncertain multidimensional sequences directly. The experiment shows that MDDTW distance-GIC is more accurate when dealing with the uncertain sequences. Compared with the traditional GIC method, the precision of the MDDTW distance-GIC method has increased nearly 30%.展开更多
基金supported by the National Science and Technology Major Project (No. 2017ZX05001-003)。
文摘Seismic waveform clustering is a useful technique for lithologic identification and reservoir characterization.The current seismic waveform clustering algorithms are predominantly based on a fixed time window,which is applicable for layers of stable thickness.When a layer exhibits variable thickness in the seismic response,a fixed time window cannot provide comprehensive geologic information for the target interval.Therefore,we propose a novel approach for a waveform clustering workfl ow based on a variable time window to enable broader applications.The dynamic time warping(DTW)distance is fi rst introduced to effectively measure the similarities between seismic waveforms with various lengths.We develop a DTW distance-based clustering algorithm to extract centroids,and we then determine the class of all seismic traces according to the DTW distances from centroids.To greatly reduce the computational complexity in seismic data application,we propose a superpixel-based seismic data thinning approach.We further propose an integrated workfl ow that can be applied to practical seismic data by incorporating the DTW distance-based clustering and seismic data thinning algorithms.We evaluated the performance by applying the proposed workfl ow to synthetic seismograms and seismic survey data.Compared with the the traditional waveform clustering method,the synthetic seismogram results demonstrate the enhanced capability of the proposed workfl ow to detect boundaries of diff erent lithologies or lithologic associations with variable thickness.Results from a practical application show that the planar map of seismic waveform clustering obtained by the proposed workfl ow correlates well with the geological characteristics of wells in terms of reservoir thickness.
基金supported by the National Natural Science Foundation of China(6153302061309014)the Natural Science Foundation Project of CQ CSTC(cstc2017jcyj AX0408)
文摘The traditional grey incidence degree is mainly based on the distance analysis methods, which is measured by the displacement difference between corresponding points between sequences. When some data of sequences are missing (inconsistency in the length of the sequences), the only way is to delete the longer sequences or to fill the shorter sequences. Therefore, some uncertainty is introduced. To solve this problem, by introducing three-dimensional grey incidence degree (3D-GID), a novel GID based on the multidimensional dynamic time warping distance (MDDTW distance-GID) is proposed. On the basis of it, the corresponding grey incidence clustering (MDDTW distance-GIC) method is constructed. It not only has the simpler computation process, but also can be applied to the incidence comparison between uncertain multidimensional sequences directly. The experiment shows that MDDTW distance-GIC is more accurate when dealing with the uncertain sequences. Compared with the traditional GIC method, the precision of the MDDTW distance-GIC method has increased nearly 30%.