The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communi...The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communication systems, is presented. By cooperating with a dual-modulus prescaler, this divider can realize an integer frequency division from 926 to 1 387. Besides the traditional standard cell design flow, such as logic synthesis, placement and routing, the interactions between front-end and back-end are also considered to optimize the design flow under deep submicron technology. By back-annotating the back-end information to front-end design, a custom wire-load model is created which is more practical compared with the default model. This divider has been fabricated in TSMC 0. 18μm CMOS technology using Artisan standard cell library. The chip area is 675 μm × 475 μm and the power consumption is about 2 mW under a 1.8 V power supply. Measurement results show that it works correctly and can realize a frequency division with high precision.展开更多
基金The National Natural Science Foundation of China(No.60472057)
文摘The implementation of a programmable frequency divider, which is one of the components of the phase-locked loop (PLL) frequency synthesizer for digital video broadcastingterrestrial (DVB-T) and other modem communication systems, is presented. By cooperating with a dual-modulus prescaler, this divider can realize an integer frequency division from 926 to 1 387. Besides the traditional standard cell design flow, such as logic synthesis, placement and routing, the interactions between front-end and back-end are also considered to optimize the design flow under deep submicron technology. By back-annotating the back-end information to front-end design, a custom wire-load model is created which is more practical compared with the default model. This divider has been fabricated in TSMC 0. 18μm CMOS technology using Artisan standard cell library. The chip area is 675 μm × 475 μm and the power consumption is about 2 mW under a 1.8 V power supply. Measurement results show that it works correctly and can realize a frequency division with high precision.