The tomato fruit fly Dacus punctatifrons is a pest of tomato, Lycopersicon esculentum Mill in Cameroon. Oviposition behavior, developmental durations for the life stages, pupal and adult weights as well as adult longe...The tomato fruit fly Dacus punctatifrons is a pest of tomato, Lycopersicon esculentum Mill in Cameroon. Oviposition behavior, developmental durations for the life stages, pupal and adult weights as well as adult longevities were investigated on tomato. The peak period of oviposition was recorded between the hours of 10:30-11:30 and 14:30-5:30. The number of eggs per clutch varied from 3-12. Although the development period was similar for both sexes, the pupal weights, adult weights as well as adult longevities were significantly different.展开更多
Accurate species-level identifications underpin many aspects of basic and applied biology;however,identifications can be hampered by a lack of discriminating morphological characters,taxonomic expertise or time.Molecu...Accurate species-level identifications underpin many aspects of basic and applied biology;however,identifications can be hampered by a lack of discriminating morphological characters,taxonomic expertise or time.Molecular approaches,such as DNA"barcoding"of the cytochrome c oxidase(COI)gene,are argued to overcome these issues.However,nuclear encoding of mitochondrial genes(numts)and poor amplification success of suboptimally preserved specimens can lead to erroneous identifications.One insect group for which these molecular and morphological problems are significant are the dacine fruit flies(Diptera:Tephritidae:Dacini).We addressed these issues associated with COI barcoding in the dacines by first assessing several"universal"COI primers against public mitochondrial genome and numt sequences for dacine taxa.We then modified a set of four primers that more closely matched true dacine COI sequence and amplified two overlapping portions of the COI barcode region.Our new primers were tested alongside universal primers on a selection of dacine species,including both fresh preserved and decades-old dry specimens.Additionally,Bactrocera tiyoni mitochondrial and nuclear genomes were compared to identify putative numts.Four numt clades were identified,three of which were amplified using existing universal primers.In contrast,our new primers preferentially amplified the"true"mitochondrial COI barcode in all dacine species tested.The new primers also successfully amplified partial barcodes from dry specimens for which full length barcodes were unobtainable.Thus we recommend these new primers be incorporated into the suites of primers used by diagnosticians and quarantine labs for the accurate identification of dacine species.展开更多
文摘The tomato fruit fly Dacus punctatifrons is a pest of tomato, Lycopersicon esculentum Mill in Cameroon. Oviposition behavior, developmental durations for the life stages, pupal and adult weights as well as adult longevities were investigated on tomato. The peak period of oviposition was recorded between the hours of 10:30-11:30 and 14:30-5:30. The number of eggs per clutch varied from 3-12. Although the development period was similar for both sexes, the pupal weights, adult weights as well as adult longevities were significantly different.
文摘Accurate species-level identifications underpin many aspects of basic and applied biology;however,identifications can be hampered by a lack of discriminating morphological characters,taxonomic expertise or time.Molecular approaches,such as DNA"barcoding"of the cytochrome c oxidase(COI)gene,are argued to overcome these issues.However,nuclear encoding of mitochondrial genes(numts)and poor amplification success of suboptimally preserved specimens can lead to erroneous identifications.One insect group for which these molecular and morphological problems are significant are the dacine fruit flies(Diptera:Tephritidae:Dacini).We addressed these issues associated with COI barcoding in the dacines by first assessing several"universal"COI primers against public mitochondrial genome and numt sequences for dacine taxa.We then modified a set of four primers that more closely matched true dacine COI sequence and amplified two overlapping portions of the COI barcode region.Our new primers were tested alongside universal primers on a selection of dacine species,including both fresh preserved and decades-old dry specimens.Additionally,Bactrocera tiyoni mitochondrial and nuclear genomes were compared to identify putative numts.Four numt clades were identified,three of which were amplified using existing universal primers.In contrast,our new primers preferentially amplified the"true"mitochondrial COI barcode in all dacine species tested.The new primers also successfully amplified partial barcodes from dry specimens for which full length barcodes were unobtainable.Thus we recommend these new primers be incorporated into the suites of primers used by diagnosticians and quarantine labs for the accurate identification of dacine species.