During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the...During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the depth of damage is a critical aspect for the design of permeability sensitive excavations, such as a deep geological repository(DGR) for nuclear waste. Review of literature regarding the depth of excavation damage zones(EDZs) indicates three zones are common and typically related to stress induced damage. Based on past developments related to brittle damage prediction using continuum modelling, the depth of the EDZs has been examined numerically. One method to capture stress induced damage in conventional engineering software is the damage initiation and spalling limit(DISL) approach. The variability of depths predicted using the DISL approach has been evaluated and guidelines are suggested for determining the depth of the EDZs around circular excavations in brittle rock masses. Of the inputs evaluated, it was found that the tensile strength produces the greatest variation in the depth of the EDZs. The results were evaluated statistically to determine the best fit relation between the model inputs and the depth of the EDZs. The best correlation and least variation were found for the outer EDZ and the highly damaged zone(HDZ) showed the greatest variation. Predictive equations for different EDZs have been suggested and the maximum numerical EDZ depths, represented by the 68% prediction interval, agreed well with the empirical evidence. This suggests that the numerical limits can be used for preliminary depth prediction of the EDZs in brittle rock for circular excavations.展开更多
The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy ...The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy equivalence principle and Boltzmann superposition principle, a set of governing equations of nonlinear integro-differential type are derived. By applying the finite difference method, Newmark method and iterative procedure, the governing equations are solved. The effects of loading amplitudes, exciting frequencies and different ply orientations on the critical time to failure initiation and nonlinear vibration amplitudes of the structures are discussed. Numerical results are presented for the different parameters and compared with the available data.展开更多
On the basis of the relationship between each classification index for underground chambers and the elastic wave velocity of rock mass, a corresponding relationship between the classification of rock surrounding under...On the basis of the relationship between each classification index for underground chambers and the elastic wave velocity of rock mass, a corresponding relationship between the classification of rock surrounding underground chambers and the initial damage variable is established by using the wave velocity definition of the initial damage variable of rock masses. Calculation and analysis of relevant data from a hydropower dam located in Southwest China show that the initial damage variable obtained by means of surrounding rock classification has a close relationship with that calculated by wave velocity, which verifies the rationality of the relationship of the two classification indices. This study establishes a foundation for further damage mechanics and stability analysis on the basis of surrounding rock classification.展开更多
Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coa...Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out.展开更多
A numerical model on stress assessment of a defective elliptic gathering tubeused in the heat recovery boiler of a pyrolyzer is built up. The effect of local defects on thecarrying capacity of the tube is analyzed by ...A numerical model on stress assessment of a defective elliptic gathering tubeused in the heat recovery boiler of a pyrolyzer is built up. The effect of local defects on thecarrying capacity of the tube is analyzed by using the MSC/NASTRAN finite element code, and thecritical size of defects is obtained. Then, two numerical models of damaged tube with local andintegral reinforcements, respectively, are also calculated. Stress classification and assessmentsare provided by applying the ASME and JB4732-1995 standard. Some guidance and suggestions about thetube reinforcements and the prediction of the remaining life of the structure for engineeringpractice are discussed.展开更多
Using the plate/shell elements in commercial software,accurate analysis of interlaminar initial damage in typical composite structures is still a challenging issue.To propose an accurate and efficient model for analys...Using the plate/shell elements in commercial software,accurate analysis of interlaminar initial damage in typical composite structures is still a challenging issue.To propose an accurate and efficient model for analysis of interlaminar initial damage,the following work is carried out:(A)A higher-order theory is firstly proposed by introducing the local Legendre polynomials,and then a novel shell element containing initial damage prediction is developed,which can directly predict transverse shear stresses without any postprocessing methods.Unknown variables at each node are independent of number of layers,so the proposed model is more efficient than the 3D-FEM.(B)Compression experiment is carried out to verify the capability of the proposed model.The results obtained from the proposed model are in good agreement with experimental data.(C)Several examples have been analyzed to further assess the capability of the proposed model by comparing to the 3D-FEM results.Moreover,accuracy and efficiency have been evaluated in different damage criterion by comparing with the selected models.The numerical results show that the proposed model can well predict the initial interlaminar damage as well as other damage.Finally,the model is implemented with UEL subroutine,so that the present approach can be readily utilized to analyze the initial damage in typical composite structures.展开更多
基金funded by the Natural Sciences and Engineering Research Council of Canadaby the Nuclear Waste Management Organization(NWMO)of Canada
文摘During the construction of an underground excavation, damage occurs in the surrounding rock mass due in large part to stress changes. While the predicted damage extent impacts profile selection and support design, the depth of damage is a critical aspect for the design of permeability sensitive excavations, such as a deep geological repository(DGR) for nuclear waste. Review of literature regarding the depth of excavation damage zones(EDZs) indicates three zones are common and typically related to stress induced damage. Based on past developments related to brittle damage prediction using continuum modelling, the depth of the EDZs has been examined numerically. One method to capture stress induced damage in conventional engineering software is the damage initiation and spalling limit(DISL) approach. The variability of depths predicted using the DISL approach has been evaluated and guidelines are suggested for determining the depth of the EDZs around circular excavations in brittle rock masses. Of the inputs evaluated, it was found that the tensile strength produces the greatest variation in the depth of the EDZs. The results were evaluated statistically to determine the best fit relation between the model inputs and the depth of the EDZs. The best correlation and least variation were found for the outer EDZ and the highly damaged zone(HDZ) showed the greatest variation. Predictive equations for different EDZs have been suggested and the maximum numerical EDZ depths, represented by the 68% prediction interval, agreed well with the empirical evidence. This suggests that the numerical limits can be used for preliminary depth prediction of the EDZs in brittle rock for circular excavations.
基金The project supported by the National Natural Science Foundation of China(10272042)the Special Science Fund of the Doctoral Discipline of the Ministry of Education.China(20020532018)
文摘The behavior of nonlinear vibration for symmetric angle-ply laminated plates including the material viscoelasticity and damage evolution is investigated. By employing the von Karman's nonlinear theory, strain energy equivalence principle and Boltzmann superposition principle, a set of governing equations of nonlinear integro-differential type are derived. By applying the finite difference method, Newmark method and iterative procedure, the governing equations are solved. The effects of loading amplitudes, exciting frequencies and different ply orientations on the critical time to failure initiation and nonlinear vibration amplitudes of the structures are discussed. Numerical results are presented for the different parameters and compared with the available data.
文摘On the basis of the relationship between each classification index for underground chambers and the elastic wave velocity of rock mass, a corresponding relationship between the classification of rock surrounding underground chambers and the initial damage variable is established by using the wave velocity definition of the initial damage variable of rock masses. Calculation and analysis of relevant data from a hydropower dam located in Southwest China show that the initial damage variable obtained by means of surrounding rock classification has a close relationship with that calculated by wave velocity, which verifies the rationality of the relationship of the two classification indices. This study establishes a foundation for further damage mechanics and stability analysis on the basis of surrounding rock classification.
基金the National Science Fund for Distinguished Young Scholars(No.52225403)the Natural Science Foundation of Shanxi Province(No.202303021212073)the National Natural Science Foundation of China(No.52104210)。
文摘Understanding the impact of mining disturbances and creep deformation on the macroscopic deformation and the microscopic pore and fracture structures(MPFS)of coal is paramount for ensuring the secure extraction of coal resources.This study conducts cyclic loading-unloading and creep experiments on coal using a low-field nuclear magnetic resonance(NMR)experimental apparatus which is equipped with mechanical loading units,enabling real-time monitoring the T2spectrum.The experiments indicated that cyclic loading-unloading stress paths initiate internal damage within coal samples.Under identical creep stress conditions,coal samples with more initial damages had more substantial instantaneous deformation and creep deformation during the creep process.After undergoing nearly 35 h of staged creep,the total strains for coal samples CC01,CC02,and CC03 reach 2.160%,2.261%,and 2.282%,respectively.In the creep stage,the peak area ratio of seepage pores and microfractures(SPM)gradually diminishes.A higher degree of initial damage leads to a more pronounced compaction trend in the SPM of coal samples.Considering the porosity evolution of SPM during the creep process,this study proposes a novel fractional derivative model for the porosity evolution of SPM.The efficacy of the proposed model in predicting porosity evolution of SPM is substantiated through experimental validation.Furthermore,an analysis of the impact mechanisms on key parameters in the model was carried out.
基金Foundation of Yangzi Petro-chemical Ltd. and Chinese Academy of Science (No. KJ95-1-201).
文摘A numerical model on stress assessment of a defective elliptic gathering tubeused in the heat recovery boiler of a pyrolyzer is built up. The effect of local defects on thecarrying capacity of the tube is analyzed by using the MSC/NASTRAN finite element code, and thecritical size of defects is obtained. Then, two numerical models of damaged tube with local andintegral reinforcements, respectively, are also calculated. Stress classification and assessmentsare provided by applying the ASME and JB4732-1995 standard. Some guidance and suggestions about thetube reinforcements and the prediction of the remaining life of the structure for engineeringpractice are discussed.
基金supported by the National Natural Science Foundation of China(No.12172295)SKLLIM1902the Natural Science Foundation in Shaanxi Province,China(No.2019JQ-909)。
文摘Using the plate/shell elements in commercial software,accurate analysis of interlaminar initial damage in typical composite structures is still a challenging issue.To propose an accurate and efficient model for analysis of interlaminar initial damage,the following work is carried out:(A)A higher-order theory is firstly proposed by introducing the local Legendre polynomials,and then a novel shell element containing initial damage prediction is developed,which can directly predict transverse shear stresses without any postprocessing methods.Unknown variables at each node are independent of number of layers,so the proposed model is more efficient than the 3D-FEM.(B)Compression experiment is carried out to verify the capability of the proposed model.The results obtained from the proposed model are in good agreement with experimental data.(C)Several examples have been analyzed to further assess the capability of the proposed model by comparing to the 3D-FEM results.Moreover,accuracy and efficiency have been evaluated in different damage criterion by comparing with the selected models.The numerical results show that the proposed model can well predict the initial interlaminar damage as well as other damage.Finally,the model is implemented with UEL subroutine,so that the present approach can be readily utilized to analyze the initial damage in typical composite structures.