Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycle...Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycles due to periodic water inundation and drainage may gradually accumulate creep deformation,resulting in rock structure’s damage or even geological hazards such as landslides.To fully investigate the effect of DW cycles on the creep damage properties of sandstone,triaxial creep tests were conducted on saturated sandstone with different DW cycles by using a triaxial rheometer apparatus.The experimental results show that both the instantaneous strain and the stabilized strain increase with the DW cycles.In addition,using the Burgers model,four kinds of functions including an exponentially decreasing function,a linearly decreasing function,a linearly increasing function and an exponentially increasing function were proposed to express the relationships between the shear modulus,viscoelastic parameters of the Burgers model and the deviatoric stress under different DW cycles.Through comparative analysis,it is found that the theoretical curves generated using proposed four kinds of functions are in good agreement with the experimental data.Furthermore,macromorphological and microstructural observations were performed on specimens after various triaxial rheological tests.For samples with small number of DW cycles,approximately X-shaped fracture surfaces were observed in shear failure zones,whereas several shear fractures including obvious axial and horizontal tensile cracks,and flaws were found for samples with relatively large DW cycles due to long-term propagation and evolution of micro-fissures and micro-pores.Furthermore,as the DW cycles increases,the variation in micro-structure of samples after creep failure was summarized into three stages,namely,a stage with good and dense structure,a stage with pore and fissure propagation,and a stage with extensive increase of pores,fissures and loose particles.It is concluded that the combination effect of permeation of water molecules through pores and fissures within sandstone,and the propagation of preexisting pores and fissures owing to the dissolution of mineral particles leads to further deterioration of the mechanical properties of sandstone as the number of DW cycles increases.This study provides a fundamental basis for evaluating the long-term stability of reservoir bank slopes under cyclic fluctuations of water level.展开更多
To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and charac...To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and characteristics of sandstone samples under different stress states. The experimental results reveal that peak strength, residual strength, elasticity modulus and deformation modulus increase linearly with confining pressure, and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure. Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples, while macroscopic failure forms under uniaxial compression were shear failure, the shear failure angle of which decreased linearly with confin- ing pressure. There were significant volume dilatation properties in the loading process of sandstone under different confining pressures, and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage, and established damage constitutive model, realizing the real-time Quantitative evaluation of samnles damage state in loading process.展开更多
By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical prop...By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.展开更多
基金supported by the National Natural Science Foundation of China (No. 41902268)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety (No. 2019ZDK030)+1 种基金the Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (No. SKLGP2020K016)the China Postdoctoral Science Foundation (No. 2019T120871)。
文摘Rock creep properties can be used to predict the long-term stability in rock engineering.In reservoir bank slopes,sandstones which are frequently used in the bank slope undergoing longterm effects of dry-wet(DW) cycles due to periodic water inundation and drainage may gradually accumulate creep deformation,resulting in rock structure’s damage or even geological hazards such as landslides.To fully investigate the effect of DW cycles on the creep damage properties of sandstone,triaxial creep tests were conducted on saturated sandstone with different DW cycles by using a triaxial rheometer apparatus.The experimental results show that both the instantaneous strain and the stabilized strain increase with the DW cycles.In addition,using the Burgers model,four kinds of functions including an exponentially decreasing function,a linearly decreasing function,a linearly increasing function and an exponentially increasing function were proposed to express the relationships between the shear modulus,viscoelastic parameters of the Burgers model and the deviatoric stress under different DW cycles.Through comparative analysis,it is found that the theoretical curves generated using proposed four kinds of functions are in good agreement with the experimental data.Furthermore,macromorphological and microstructural observations were performed on specimens after various triaxial rheological tests.For samples with small number of DW cycles,approximately X-shaped fracture surfaces were observed in shear failure zones,whereas several shear fractures including obvious axial and horizontal tensile cracks,and flaws were found for samples with relatively large DW cycles due to long-term propagation and evolution of micro-fissures and micro-pores.Furthermore,as the DW cycles increases,the variation in micro-structure of samples after creep failure was summarized into three stages,namely,a stage with good and dense structure,a stage with pore and fissure propagation,and a stage with extensive increase of pores,fissures and loose particles.It is concluded that the combination effect of permeation of water molecules through pores and fissures within sandstone,and the propagation of preexisting pores and fissures owing to the dissolution of mineral particles leads to further deterioration of the mechanical properties of sandstone as the number of DW cycles increases.This study provides a fundamental basis for evaluating the long-term stability of reservoir bank slopes under cyclic fluctuations of water level.
基金the National Natural Science Foundation of China (Nos.51323004 and 51574223)the Postdoctoral Science Foundation of China (No.2015M571842)the Open Research Fund of Research Center of Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology (No.SJXTY1502)
文摘To study the mechanical and damage evolution properties of sandstone under triaxial compression, we analyzed the stress strain curve characteristics, deformation and strength properties, and failure process and characteristics of sandstone samples under different stress states. The experimental results reveal that peak strength, residual strength, elasticity modulus and deformation modulus increase linearly with confining pressure, and failure models transform from fragile failure under low confining pressure to ductility failure under high confining pressure. Macroscopic failure forms of samples under uniaxial compression were split failure parallel to the axis of samples, while macroscopic failure forms under uniaxial compression were shear failure, the shear failure angle of which decreased linearly with confin- ing pressure. There were significant volume dilatation properties in the loading process of sandstone under different confining pressures, and we analyzed the damage evolution properties of samples based on acoustic emission damage and volumetric dilatation damage, and established damage constitutive model, realizing the real-time Quantitative evaluation of samnles damage state in loading process.
基金Supported by the National Key Technologies Research&Development Program(2017YFC0804607)the National Key Basic Research Development Plan(973 Proect)(2014CB047000)
文摘By using the technique of the split Hopkinson pressure bar( SHPB),impact tests at different stress wavelengths( 0. 8-2. 0 m) and strain rates( 20-120 s^(-1)) were conducted to study the dynamic mechanical properties and damage accumulation evolution lawof granite. Test results showthat the dynamic compressive strength and strain rate of granite have a significantly exponential correlation;the relationship between peak strain and strain rate is approximately linear,and the increase of wavelengths generally makes the level of peak strain uplift. The multiple-impacts test at a lowstrain rate indicates that at the same wavelength,the cumulative damage of granite shows an exponential increasing form with the increase of strain rate; when keeping the increase of strain rate constant and increasing the stress wavelength,the damage accumulation effect of granite is intensified and still shows an exponential increasing form; under the effect of multiple impacts,the damage development trend of granite is similar overall,but the increase rate is accelerating. Therefore the damage evolution model was established on the basis of the exponential function while the physical meaning of parameters in the model was determined. The model can reflect the effect of the wave parameters and multiple impacts. The validity of the model and the physical meaning of the parameters were verified by the test,which further offer a reference for correlational research and engineering application for the granite.