Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the th...Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the thermal noise, and which one mainly limits the torsion pendulum in low frequency is difficult to be verified by experiment. Based on the conventional method of fast Fourier transform, we propose a developed method to determine the thermal noise limit and then obtain the precise power spectrum density of the pendulum motion signal. The experiment result verifies that the thermal noise is mainly contributed by the internal damping in the fiber in the low frequency torsion pendulum experiment with a high vacuum. Quantitative data analysis shows that the basic noise level in the experiment is about one to two times of the theoretical value of internal damping thermal noise.展开更多
A new artificial boundary condition for time domain analysis of a structure-unlimited-foundation system was proposed.The boundary condition was based on the damping-solvent extraction method.The principle of the dampi...A new artificial boundary condition for time domain analysis of a structure-unlimited-foundation system was proposed.The boundary condition was based on the damping-solvent extraction method.The principle of the damping-solvent extraction method was described.An artificial boundary condition was then established by setting two spring-damper systems and one artificial damping limited region.A test example was developed to verify that the proposed boundary condition and model had high precision.Compared with the damping-solvent extraction method,this boundary condition is easier to be applied to finite element method(FEM)-based numerical calculations.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11575160 and 11275075)the Natural Science Foundation of Key Projects of Hubei Province,China(Grant No.2013CFA045)
文摘Thermal noise is one of the most fundamental limits to the sensitivity in weak equivalence principle test with a rotating torsion pendulum. Velocity damping and internal damping are two of many contributions at the thermal noise, and which one mainly limits the torsion pendulum in low frequency is difficult to be verified by experiment. Based on the conventional method of fast Fourier transform, we propose a developed method to determine the thermal noise limit and then obtain the precise power spectrum density of the pendulum motion signal. The experiment result verifies that the thermal noise is mainly contributed by the internal damping in the fiber in the low frequency torsion pendulum experiment with a high vacuum. Quantitative data analysis shows that the basic noise level in the experiment is about one to two times of the theoretical value of internal damping thermal noise.
基金This study was supported by Project supported by the National Natural Science Foundation of China(Grant Nos.51109029,51178081,51138001,51009020)the China Postdoctoral Science Foundation(Grant No.20110491535).
文摘A new artificial boundary condition for time domain analysis of a structure-unlimited-foundation system was proposed.The boundary condition was based on the damping-solvent extraction method.The principle of the damping-solvent extraction method was described.An artificial boundary condition was then established by setting two spring-damper systems and one artificial damping limited region.A test example was developed to verify that the proposed boundary condition and model had high precision.Compared with the damping-solvent extraction method,this boundary condition is easier to be applied to finite element method(FEM)-based numerical calculations.