Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivit...Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivity show significant heterogeneity in this area. To better understand the geological controlling mechanism on gas distribution heterogeneity, the burial history, hydrocarbon generation history and tectonic evolution history were studied by numerical simulation and experimental simulation, which could provide guidance for further development of CBM in this area. The burial history of coal reservoir can be classified into six stages, i.e., shallowly buried stage, deeply burial stage, uplifting stage, short-term tectonic subsidence stage, large-scale uplifting stage, sustaining uplifting and structural inversion stage. The organic matter in coal reservoir experienced twice hydrocarbon generation. Primary and secondary hydrocarbon generation processes were formed by the Early and Middle Triassic plutonic metamorphism and Early Cretaceous regional magmatic thermal metamorphism, respectively. Five critical tectonic events of the Indosinian, Yanshanian and Himalayan orogenies affect different stages of the CBM reservoir accumulation process. The Indosinian orogeny mainly controls the primary CBM generation. The Yanshanian Orogeny dominates the second gas generation and migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution heterogeneity.展开更多
The Daning-Jixian block,the eastern edge of the Ordos Basin,is one of the most potential areas for CO_(2)geological storage,enhanced coalbed methane recovery(ECBM)exploration and production in China in recent decades....The Daning-Jixian block,the eastern edge of the Ordos Basin,is one of the most potential areas for CO_(2)geological storage,enhanced coalbed methane recovery(ECBM)exploration and production in China in recent decades.The ionic composition and total dissolved solids(TDS)of the produced water,coal organic matter maturity,molecular composition and carbon isotope characteristics of the produced gas were utilized to analyze the hydrogeological condition,CBM generation and migration characteristics in this area.The CBM enrichment patterns and the geological impacts on gas well production characteristics were revealed.The optimal area for CBM development and CO_(2)geological storage in the study area were also proposed.Dominated by the Xueguan reverse fault zone,the hydraulic unit in this area can be divided into two parts(i.e.,the recharge-runoff zone in the east and the weak runoff-stagnation zone in the west).The thermogenic gas is dominating CBM genesis in this area.Secondary biogenic gas replenishment is only distributed in the eastern margin area,where theδ13C1 value is less than the thermal simulation results as an influence of hydrodynamic fractionation.Finally,two models of CBM formation and accumulation were proposed,1)thermogenic CBM migrated by hydrodynamic and resorbed for preservation at impermeable fault boundaries;2)thermogenic CBM trapped by fault and accumulated by hydrodynamic in slope zone.The gas production performance,generally increased from east to west,is mainly dominated by hydrogeological conditions.Generally,the west side of the fault zone is the enrichment and high-yield area for ECBM development and CO_(2)geological storage in the study area.展开更多
基金This research was funded by the National Natural Science Foundation of China (Grant No. 41902178)National Science and Technology Major Project (Oil & Gas) (No. 2016ZX05065)+1 种基金Natural Science Foundation of Shanxi Province, China (No. 20210302123165)Open Fund of Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering, China University of Geosciences (Beijing) (No. 2019BJ02001).
文摘Commercial exploration and development of deep buried coalbed methane (CBM) in Daning-Jixian Block, eastern margin of Ordos Basin, have rapidly increased in recent decades. Gas content, saturation and well productivity show significant heterogeneity in this area. To better understand the geological controlling mechanism on gas distribution heterogeneity, the burial history, hydrocarbon generation history and tectonic evolution history were studied by numerical simulation and experimental simulation, which could provide guidance for further development of CBM in this area. The burial history of coal reservoir can be classified into six stages, i.e., shallowly buried stage, deeply burial stage, uplifting stage, short-term tectonic subsidence stage, large-scale uplifting stage, sustaining uplifting and structural inversion stage. The organic matter in coal reservoir experienced twice hydrocarbon generation. Primary and secondary hydrocarbon generation processes were formed by the Early and Middle Triassic plutonic metamorphism and Early Cretaceous regional magmatic thermal metamorphism, respectively. Five critical tectonic events of the Indosinian, Yanshanian and Himalayan orogenies affect different stages of the CBM reservoir accumulation process. The Indosinian orogeny mainly controls the primary CBM generation. The Yanshanian Orogeny dominates the second gas generation and migration processes. The Himalayan orogeny mainly affects the gas dissipation process and current CBM distribution heterogeneity.
基金the National Natural Science Foundation of China(Grant No.41902178)the National Science and Technology Major Project(Oil&Gas)(No.2016ZX05065)+1 种基金the Natural Science Foundation of Shanxi Province,China(No.20210302123165)the Open Fund of Beijing Key Laboratory of Unconventional Natural Gas Geological Evaluation and Development Engineering,China University of Geosciences(Beijing)(No.2019BJ02001).
文摘The Daning-Jixian block,the eastern edge of the Ordos Basin,is one of the most potential areas for CO_(2)geological storage,enhanced coalbed methane recovery(ECBM)exploration and production in China in recent decades.The ionic composition and total dissolved solids(TDS)of the produced water,coal organic matter maturity,molecular composition and carbon isotope characteristics of the produced gas were utilized to analyze the hydrogeological condition,CBM generation and migration characteristics in this area.The CBM enrichment patterns and the geological impacts on gas well production characteristics were revealed.The optimal area for CBM development and CO_(2)geological storage in the study area were also proposed.Dominated by the Xueguan reverse fault zone,the hydraulic unit in this area can be divided into two parts(i.e.,the recharge-runoff zone in the east and the weak runoff-stagnation zone in the west).The thermogenic gas is dominating CBM genesis in this area.Secondary biogenic gas replenishment is only distributed in the eastern margin area,where theδ13C1 value is less than the thermal simulation results as an influence of hydrodynamic fractionation.Finally,two models of CBM formation and accumulation were proposed,1)thermogenic CBM migrated by hydrodynamic and resorbed for preservation at impermeable fault boundaries;2)thermogenic CBM trapped by fault and accumulated by hydrodynamic in slope zone.The gas production performance,generally increased from east to west,is mainly dominated by hydrogeological conditions.Generally,the west side of the fault zone is the enrichment and high-yield area for ECBM development and CO_(2)geological storage in the study area.