One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR ...One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR area before water diversion, as well as to estimate potential risks of water quality after water diversion, we conducted an investigation on phytoplankton in the DJKR from August 2008 to May 2009. The investigation included 10 sampling sites, each with four depths of 0.5, 5, 10, and 20 m. In this study, 117 taxa belonging to 76 genera were identified, consisting of diatoms (39 taxa), green algae (47 taxa), blue-green algae (19 taxa), and others (12 taxa). Annual average phytoplankton abundance was 2.01×10^6 ind./L, and the highest value was 14.72 ×10^6 ind/L (at site 3 in August 2008). Phytoplankton abundance in front of the Danjiangkou Dam (DJKD) was higher than that of the Danjiang Reservoir Basin. Phytoplankton distribution showed a vertical declining trend from 0.5 m to 20 m at most sites in August 2008 (especially at sites of 1, 2, 4 and 10), but no distinct pattern in other sampling months. In December 2008 and March 2009, Stephanodiseus sp. was the most abundant species, amounting to 55.23% and 72.34%, respectively. We propose that high abundance ofStephanodiscus sp. may have contributed greatly to the frequent occurrence of Stephanodiscus sp. blooms in middle-low reaches of the Hanjiang River during the early spring of 2009. In comparison with previous studies conducted from 1992 to 2006, annual average phytoplankton density, green algae and blue-green algae species, as well as major nutrient concentrations increased, while phytoplankton diversity indices declined. This indicates a gradual decline in water quality. More research should be conducted and countermeasures taken to prevent further deterioration of water quality in the DJKR.展开更多
Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevent...Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevention and that it is difficult to fill the reservoir fully at the end of year. Early reservoir refill is an effective method for addressing the contradiction between the needs of flood control and of comprehensive utilization. This study selected the Danjiangkou Reservoir, which is the water source for the middle route of the South-North Water Diversion Project (SNWDP) in China, as a case study, and analyzed the necessity and operational feasibility of early reservoir refill. An early reservoir refill model is proposed based on the maximum average storage ratio, optimized by the progressive optimality algorithm, and the optimal scheduling schemes were obtained. Results show that the best time of refill operation for the Danjiangkou Reservoir is September 15, and the upper limit water level during September is 166 m. The proposed early refill scheme, in stages, can increase the annual average storage ratio from 77.51% to 81.99%, and decrease spilled water from 2.439 × 109 m^3 to 1.692×109 m^3, in comparison to the original design scheme. The suggested early significant comprehensive benefits, which decision-making. reservoir refill scheme can be easily operated with may provide a good reference for scheduling展开更多
Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nu...Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nutrients during 2008 and 2011,with five treatments and three replications.The winter wheat and summer maize were used as the test crops.Treatments consisted of four hedgerows:Amorpha(Amorpha fruticosa L.),Honeysuckle(Lonicera japonica Thunb.),Day-lily flower(Hemerocallis citrina Baroni.),and Sabaigrass(Eulaliopsis binata),and a control without hedgerow.Result showed that the runoff under the control treatment was much higher than that of hedgerows.Amorpha could reduce the runoff by 35.2%compared with the control.Soil losses in four hedgerows showed significant reduction in four years(e.g.,Amorpha:78.3%;Honeysuckle:77.1%).Nutrient losses in winter were much higher than that in summer,especially total nitrogen,total phosphorus and total potassium,even though there was an abundant precipitation in summer.Hedgerows greatly affected the soil and nutrient losses on slopping farmland compared with the control treatment,especially Amorpha treatment.The present study found that the Amorpha could be used as the hedgerow species for reducing soil and water loss in the Danjiangkou Reservoir Region.展开更多
Nitrogen deposition is an important means of exogenous nitrogen input in reservoir water.Agricultural activities around the reservoir lead to a sharp increase in the concentration of ammonia in the atmosphere,which po...Nitrogen deposition is an important means of exogenous nitrogen input in reservoir water.Agricultural activities around the reservoir lead to a sharp increase in the concentration of ammonia in the atmosphere,which poses a threat to the reservoir water body.Clarifying the contribution of agricultural ammonia release to atmospheric NH_(x)(gaseous NH_(3)and particulate NH_(4)^(+)),in the reservoir area can provide a theoretical foundation for local reactive nitrogen control.We collected atmospheric NH_(3)and NH_(4)^(+)samples during the agricultural periods and analyzed the isotopic characteristics of atmospheric NH_(x)and the contribution rates of different ammonia sources in the Xichuan area of the Danjiangkou Reservoir.The results showed that the initialδ~(15)N values of NH_(3)(-30.0‰to–7.2‰)and particulate NH_(4)^(+)(–33‰to+4.9‰for finer and coarser particles,respectively)are different,and their contribution ratios from dissimilar ammonia sources are also different,among which NH_(4)^(+)is more susceptible to meteorological factors.However,since the atmospheric NH_(x)in the Xichuan area is mainly gaseous NH_(3),the final sources of atmospheric ammonia nitrogen source depend on gaseous NH_(3).Agricultural sources(59%-74%)were the main NH_(3)sources in this area.Among them,the fertilizer use emission was dominant;it had the highest contribution rate in summer during the agricultural period and a more prominent impact in areas with less human interference.Reasonable regulation of the application of high-ammonia releasing fertilizer,especially during the agricultural period in summer,is an effective way to reduce the threat of atmospheric ammonia to water health.展开更多
Fresh water microplastic pollution is of pressing concern globally,but its distribution and sources in reservoirs are poorly documented.Danjiangkou Reservoir is the second largest reservoir in China and is divided int...Fresh water microplastic pollution is of pressing concern globally,but its distribution and sources in reservoirs are poorly documented.Danjiangkou Reservoir is the second largest reservoir in China and is divided into the Han Reservoir and Dan Reservoir.In this work,microplastic abundances and morphological characteristics of the reservoir were investigated.The microplastic abundance of 15 main tributaries of the reservoir was also measured.The vertical distribution(in water column and sediment),horizontal distribution(in Han Reservoir and Dan Reservoir)and source of microplastics were analyzed.Microplastics accumulated in the middle layer of the reservoir,and the size and color of the microplastic particles changed from the surface to the bottom,which implies that surveys of surface water are not enough to determine the microplastic contamination for deep water reservoirs.In the surface water,the microplastic abundance in the Han Reservoir was lower than that in the Dan Reservoir(p<0.05),but microplastic abundance did not differ significantly in the intermediate and bottom water.Tributaries were one of the main sources of microplastics for Han Reservoir but not for Dan Reservoir.Agricultural cultivation in the hydro-fluctuation belt might be an important source of microplastics in the Dan Reservoir,which should be given additional attention.The results of this study can provide valuable information for developing microplastic sampling strategies in deep water reservoirs.Further studies are recommended to investigate the process through which microplastics in the hydro-fluctuation belt enter the reservoir and the sinking behavior of microplastics in the reservoir.展开更多
Inter-basin water deal of nitrogen are great transfers containing a great threats to human health, biodiversity, and air and water quality in the recipient area. Danjiangkou Reservoir, the source reservoir for China...Inter-basin water deal of nitrogen are great transfers containing a great threats to human health, biodiversity, and air and water quality in the recipient area. Danjiangkou Reservoir, the source reservoir for China's South-to-North Water Diversion Middle Route Project, suffers from total nitrogen pollution and threatens the water transfer to a number of metropolises including the capital, Beijing. To locate the main source of nitrogen pollution into the reservoir, especially near the Taocha canal head, where the intake of water transfer begins, we constructed a 3-D water quality model. We then used an inflow sensitivity analysis method to analyze the sig- nificance of inflows from each tributary that may contribute to the total nitrogen pollution and affect water quality. The results indicated that the Han River was the most significant river with a sensitivity index of 0.340, followed by the Dan River with a sensitivity index of 0.089, while the Guanshan River and the Lang River were not significant, with the sensitivity indices of 0.002 and 0.001, respectively. This result implies that the concentration and amount of nitrogen inflow outweighs the geographical position of the tributary for sources of total nitrogen pollution to the Taocha canal head of the Danjiangkou Reservoir.展开更多
The total capacity of Three Gorges Reservoir(TGR) and Danjiangkou Reservoir(DJR) is large and has significant seasonal fluctuations, which give rise to crustal instability. In this research, we focus on studying t...The total capacity of Three Gorges Reservoir(TGR) and Danjiangkou Reservoir(DJR) is large and has significant seasonal fluctuations, which give rise to crustal instability. In this research, we focus on studying the temporal and spatial variation of crustal deformation in Hubei Province caused by reservoir impoundment of TGR and DJR.The Digital Elevation Model, historical hydrological information, GPS monitoring data and load-induced deformation model are combined to monitor the crustal deformation. The modeled results indicate that in the trapezoidal area between the TGR and DJR, the average vertical deformations at different latitudes have different variation tendencies. The vertical deformation modulus and fluctuation amplitude are larger at the latitude of 33 N/32.5 N from 2003 to 2006 and at the latitude of 31 N/32.5 N from 2008 to 2014, while the latter are much larger than the former. Moreover, from2008 to 2014, the frequency and the intensity of seismic activities are all enhanced significantly in this region. The modeled results at the GPS sites are consistent with the vertical displacement of GPS monitoring results in trends and the waveform. It can be inferred that the seasonal deformation is elastic. The horizontal deformation components have the same variation trends with that at each GPS monitoring station,which demonstrates that the whole region is moving toward the southeast. The spatial variation of crustal deformation demonstrates that the impoundment of TGR in2003 causes significant vertical displacements, with the maximum modulus of 32 mm downward located in Xiangjiang River's estuary. When the water storage increases, the maximum value will become larger, and the location will move toward the upstream.Besides, the earthquakes occurred more frequently in the region with maximum deformation modulus.展开更多
As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD...As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.展开更多
基金Supported by the National Basic Research Program of China (973 Program) (No. 2008CB418006)the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX-YW-14-1)
文摘One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR area before water diversion, as well as to estimate potential risks of water quality after water diversion, we conducted an investigation on phytoplankton in the DJKR from August 2008 to May 2009. The investigation included 10 sampling sites, each with four depths of 0.5, 5, 10, and 20 m. In this study, 117 taxa belonging to 76 genera were identified, consisting of diatoms (39 taxa), green algae (47 taxa), blue-green algae (19 taxa), and others (12 taxa). Annual average phytoplankton abundance was 2.01×10^6 ind./L, and the highest value was 14.72 ×10^6 ind/L (at site 3 in August 2008). Phytoplankton abundance in front of the Danjiangkou Dam (DJKD) was higher than that of the Danjiang Reservoir Basin. Phytoplankton distribution showed a vertical declining trend from 0.5 m to 20 m at most sites in August 2008 (especially at sites of 1, 2, 4 and 10), but no distinct pattern in other sampling months. In December 2008 and March 2009, Stephanodiseus sp. was the most abundant species, amounting to 55.23% and 72.34%, respectively. We propose that high abundance ofStephanodiscus sp. may have contributed greatly to the frequent occurrence of Stephanodiscus sp. blooms in middle-low reaches of the Hanjiang River during the early spring of 2009. In comparison with previous studies conducted from 1992 to 2006, annual average phytoplankton density, green algae and blue-green algae species, as well as major nutrient concentrations increased, while phytoplankton diversity indices declined. This indicates a gradual decline in water quality. More research should be conducted and countermeasures taken to prevent further deterioration of water quality in the DJKR.
基金supported by the National Natural Science Foundation of China(Grant No.51190094)the National Key Technologies Research and Development Program of China(Grant No.2009BAC56B02)
文摘Water levels in reservoirs are generally not allowed to exceed the flood-limited water level during the flood season, which means that huge amounts of water spill in order to provide adequate storage for flood prevention and that it is difficult to fill the reservoir fully at the end of year. Early reservoir refill is an effective method for addressing the contradiction between the needs of flood control and of comprehensive utilization. This study selected the Danjiangkou Reservoir, which is the water source for the middle route of the South-North Water Diversion Project (SNWDP) in China, as a case study, and analyzed the necessity and operational feasibility of early reservoir refill. An early reservoir refill model is proposed based on the maximum average storage ratio, optimized by the progressive optimality algorithm, and the optimal scheduling schemes were obtained. Results show that the best time of refill operation for the Danjiangkou Reservoir is September 15, and the upper limit water level during September is 166 m. The proposed early refill scheme, in stages, can increase the annual average storage ratio from 77.51% to 81.99%, and decrease spilled water from 2.439 × 109 m^3 to 1.692×109 m^3, in comparison to the original design scheme. The suggested early significant comprehensive benefits, which decision-making. reservoir refill scheme can be easily operated with may provide a good reference for scheduling
文摘Soil and water loss has been a major environmental problem in the Danjiangkou Reservoir Region.A study of 14°sloping farmland was performed on impact of different contour hedgerows on runoff,losses of soil and nutrients during 2008 and 2011,with five treatments and three replications.The winter wheat and summer maize were used as the test crops.Treatments consisted of four hedgerows:Amorpha(Amorpha fruticosa L.),Honeysuckle(Lonicera japonica Thunb.),Day-lily flower(Hemerocallis citrina Baroni.),and Sabaigrass(Eulaliopsis binata),and a control without hedgerow.Result showed that the runoff under the control treatment was much higher than that of hedgerows.Amorpha could reduce the runoff by 35.2%compared with the control.Soil losses in four hedgerows showed significant reduction in four years(e.g.,Amorpha:78.3%;Honeysuckle:77.1%).Nutrient losses in winter were much higher than that in summer,especially total nitrogen,total phosphorus and total potassium,even though there was an abundant precipitation in summer.Hedgerows greatly affected the soil and nutrient losses on slopping farmland compared with the control treatment,especially Amorpha treatment.The present study found that the Amorpha could be used as the hedgerow species for reducing soil and water loss in the Danjiangkou Reservoir Region.
基金supported by the National Natural Science Foundation of China (Nos.U1704241 and 42007175)the Plan for Scientific Innovation Talent of Henan Province (No.194200510010)the Science Research Funds for the Universities of Henan Province (No.NSFRF200326)。
文摘Nitrogen deposition is an important means of exogenous nitrogen input in reservoir water.Agricultural activities around the reservoir lead to a sharp increase in the concentration of ammonia in the atmosphere,which poses a threat to the reservoir water body.Clarifying the contribution of agricultural ammonia release to atmospheric NH_(x)(gaseous NH_(3)and particulate NH_(4)^(+)),in the reservoir area can provide a theoretical foundation for local reactive nitrogen control.We collected atmospheric NH_(3)and NH_(4)^(+)samples during the agricultural periods and analyzed the isotopic characteristics of atmospheric NH_(x)and the contribution rates of different ammonia sources in the Xichuan area of the Danjiangkou Reservoir.The results showed that the initialδ~(15)N values of NH_(3)(-30.0‰to–7.2‰)and particulate NH_(4)^(+)(–33‰to+4.9‰for finer and coarser particles,respectively)are different,and their contribution ratios from dissimilar ammonia sources are also different,among which NH_(4)^(+)is more susceptible to meteorological factors.However,since the atmospheric NH_(x)in the Xichuan area is mainly gaseous NH_(3),the final sources of atmospheric ammonia nitrogen source depend on gaseous NH_(3).Agricultural sources(59%-74%)were the main NH_(3)sources in this area.Among them,the fertilizer use emission was dominant;it had the highest contribution rate in summer during the agricultural period and a more prominent impact in areas with less human interference.Reasonable regulation of the application of high-ammonia releasing fertilizer,especially during the agricultural period in summer,is an effective way to reduce the threat of atmospheric ammonia to water health.
基金supported by the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Nos.CKSF2019380/SH,CKSF2017062/SH)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23040303)。
文摘Fresh water microplastic pollution is of pressing concern globally,but its distribution and sources in reservoirs are poorly documented.Danjiangkou Reservoir is the second largest reservoir in China and is divided into the Han Reservoir and Dan Reservoir.In this work,microplastic abundances and morphological characteristics of the reservoir were investigated.The microplastic abundance of 15 main tributaries of the reservoir was also measured.The vertical distribution(in water column and sediment),horizontal distribution(in Han Reservoir and Dan Reservoir)and source of microplastics were analyzed.Microplastics accumulated in the middle layer of the reservoir,and the size and color of the microplastic particles changed from the surface to the bottom,which implies that surveys of surface water are not enough to determine the microplastic contamination for deep water reservoirs.In the surface water,the microplastic abundance in the Han Reservoir was lower than that in the Dan Reservoir(p<0.05),but microplastic abundance did not differ significantly in the intermediate and bottom water.Tributaries were one of the main sources of microplastics for Han Reservoir but not for Dan Reservoir.Agricultural cultivation in the hydro-fluctuation belt might be an important source of microplastics in the Dan Reservoir,which should be given additional attention.The results of this study can provide valuable information for developing microplastic sampling strategies in deep water reservoirs.Further studies are recommended to investigate the process through which microplastics in the hydro-fluctuation belt enter the reservoir and the sinking behavior of microplastics in the reservoir.
文摘Inter-basin water deal of nitrogen are great transfers containing a great threats to human health, biodiversity, and air and water quality in the recipient area. Danjiangkou Reservoir, the source reservoir for China's South-to-North Water Diversion Middle Route Project, suffers from total nitrogen pollution and threatens the water transfer to a number of metropolises including the capital, Beijing. To locate the main source of nitrogen pollution into the reservoir, especially near the Taocha canal head, where the intake of water transfer begins, we constructed a 3-D water quality model. We then used an inflow sensitivity analysis method to analyze the sig- nificance of inflows from each tributary that may contribute to the total nitrogen pollution and affect water quality. The results indicated that the Han River was the most significant river with a sensitivity index of 0.340, followed by the Dan River with a sensitivity index of 0.089, while the Guanshan River and the Lang River were not significant, with the sensitivity indices of 0.002 and 0.001, respectively. This result implies that the concentration and amount of nitrogen inflow outweighs the geographical position of the tributary for sources of total nitrogen pollution to the Taocha canal head of the Danjiangkou Reservoir.
基金supported by National 973 Project China (2013CB733302, 2013CB733305)National Natural Science Foundation of China (41174011, 41429401, 41210006, 41128003, 41021061)
文摘The total capacity of Three Gorges Reservoir(TGR) and Danjiangkou Reservoir(DJR) is large and has significant seasonal fluctuations, which give rise to crustal instability. In this research, we focus on studying the temporal and spatial variation of crustal deformation in Hubei Province caused by reservoir impoundment of TGR and DJR.The Digital Elevation Model, historical hydrological information, GPS monitoring data and load-induced deformation model are combined to monitor the crustal deformation. The modeled results indicate that in the trapezoidal area between the TGR and DJR, the average vertical deformations at different latitudes have different variation tendencies. The vertical deformation modulus and fluctuation amplitude are larger at the latitude of 33 N/32.5 N from 2003 to 2006 and at the latitude of 31 N/32.5 N from 2008 to 2014, while the latter are much larger than the former. Moreover, from2008 to 2014, the frequency and the intensity of seismic activities are all enhanced significantly in this region. The modeled results at the GPS sites are consistent with the vertical displacement of GPS monitoring results in trends and the waveform. It can be inferred that the seasonal deformation is elastic. The horizontal deformation components have the same variation trends with that at each GPS monitoring station,which demonstrates that the whole region is moving toward the southeast. The spatial variation of crustal deformation demonstrates that the impoundment of TGR in2003 causes significant vertical displacements, with the maximum modulus of 32 mm downward located in Xiangjiang River's estuary. When the water storage increases, the maximum value will become larger, and the location will move toward the upstream.Besides, the earthquakes occurred more frequently in the region with maximum deformation modulus.
基金This research was financially supported by the National Natural Science Foundation of China(No.U2040210)the National Key R&D Program(Nos.2019YFC0408904,2019YFC0408901).
文摘As the biggest inter-basin water transfer scheme in the world,the South-to-North Water Diversion Project(SNWD) was designed to alleviate the water crisis in North China.The main channel of the middle route of the SNWD is of great concern in terms of the drinking water quality.In this study,we tested the hypothesis that the dissolved organic matter(DOM) derived from the planktonic algae causes the rising levels of COD_(Mn) along the middle route by monitoring data on water quality(2015-2019,monthly resolution).The results showed that algal density in the main channel increased along the channel and was significantly correlated with COD_(Mn)(p <0.01).Five fluorescent components of DOM,including tyrosine-like(14.85%),tryptophan-like(22.48%),microbial byproduct-like(26.34%),fulvic acid-like(11.41%),and humic acid-like(24.92%) components,were detected.The level of tyrosine-like components increased along the channel and was significantly correlated with algal density(p<0.01),indicating that algae significantly changed the level of DOM in the channel.Algal decomposition and metabolism were found to be the main mechanisms that drive the changes in COD_(Mn).Therefore,controlling algal density would be an important measure to prevent further increase in CODMn and for the guarantee of excellent water quality.