Danxia geomorphology originates fi'om China. This paper studies the spatial distribution and differences in characteristics of Danxia landforms. Based on relevant research and investigations, three congregated areas ...Danxia geomorphology originates fi'om China. This paper studies the spatial distribution and differences in characteristics of Danxia landforms. Based on relevant research and investigations, three congregated areas of Danxia landform in China are discussed in this paper. They are the southeast area (including Jiangxi, Fujian, Zhejiang, Hunan and Guangxi provinces), the southwest area (the transitional zone of Yunnan-Guizhou Plateau and Sichuan Basin) and the northwest area (including Longshan mountain and along the banks of the Huanghe River and its anabranches). Not only the conditions of geology and geography of the three areas but also the differences of Danxia landforms of the three areas are analyzed. The Danxia landscape, characterized by upright-shaped peaks, Danxia mesa, stone wall, cave and vertical cave, "Danxia natural bridge", "a narrow strip of sky" and so on, often presents in the southeast area. The landscape of southwest area is characterized by Danxia escarpment faces and waterfalls. In the northwest area, the Danxia landscape has the traits of arid areas simultaneously, for example, mud-coating type, columniation type, board type, moreover, it is greatly different between these environmental factors such as the microclimate, water, wind, and the loess cover. Finally it explores the causes which lead differences in landform and also explains the landform formation process and its mechanism with reference to the rates of crustal uplift, the tectonic red-basin, and the external processes including working of running water, weathering, biogenic, gravity in each area of Danxia Landforms in China.展开更多
Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanis...Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanism,and mechanical characteristics of its strata and rocks are not clear.In this paper,the Ganquan canyon group is used as the research object.Basic physical and mechanical indices of sandstone in the Ganquan canyon group were measured through field investigation and indoor experiments,and the deterioration trends for the mechanical parameters of sandstone in this area under the action of infiltration,acid dry-wet cycles,and freeze-thaw cycles were revealed.Lastly,the formation and evolutionary mechanism of the slit-type Danxia landform were discussed.The results showed that:(1)The sandstone in the canyon group had a low cementation degree and weak cohesive force,which was easily weakened under the action of water,resulting in a decrease in compressive strength and elastic modulus.(2)Acidic dry-wet cycles caused the mineral composition of the sandstone to be dissolved,and the micropores continued to grow and develop until new cracks were produced.Macroscopically,the compressive strength and elastic modulus of sandstone were greatly reduced,and this damage was cumulative and staged.The greater the acidity,the greater the damage.(3)As the number of freeze-thaw cycles increased,the uniaxial compressive strength and elastic modulus of the sandstone decreased continuously.During the freeze-thaw cycle process,the growth and development of cracks were primarily in fracture mode and usually developed along parallel bedding positions.(4)The interaction of tectonic activity and lithology with different weathering processes was a key factor in the formation and evolution of the slit-type Danxia landform.In conclusion,the intricate process of weathering influenced by historical climatic fluctuations has been pivotal in shaping the topography of Danxia landform.展开更多
The Jianglangshan Geopark in the western Zhejiang Province of Southeast China is well-known for its spectacular red-colored sandstone landforms. Little is known about the depositional processes of the conglomerate-dom...The Jianglangshan Geopark in the western Zhejiang Province of Southeast China is well-known for its spectacular red-colored sandstone landforms. Little is known about the depositional processes of the conglomerate-dominated Fangyan Formation, the lithologic base of the Danxia landforms in this geopark. Based on detailed field investigation of lithology, sedimentary structures, bed thickness and geometry, five facies are recognized: facies A(matrixsupported cobble conglomerate), facies B(pebble conglomerate), facies C(pebbly sandstone), facies D(fine-grained sandstone) and facies E(mudstone). The results show that streamflow-dominated fans were the main depositional processes responsible for the accumulation of the Fangyan Formation along the mountain fronts. These fan conglomerates form the base for the evolution of the Danxia landscapes owing to the uplift and erosion of the study area. In contrast, the fine-grained sedimentary successions produced by fluvial floodplains in the distal part of the fans were thinner and more easily weathered. Such sedimentary facies distribution patterns were thought to be similar during Late Cretaceous across Southeast China. The Danxia landforms are largely the geographical expressions of the conglomerate-dominated redbeds in the proximal-middle fans.展开更多
Jianglang Mountain is situated at the transitional zone of South China fold-system, Jiangshan-Shaoxing deep fracture zone and Baoan-Xiakou-Zhangcun fracture zone. The forming of the Xiakou basin was attributed to the ...Jianglang Mountain is situated at the transitional zone of South China fold-system, Jiangshan-Shaoxing deep fracture zone and Baoan-Xiakou-Zhangcun fracture zone. The forming of the Xiakou basin was attributed to the pull-apart fault depression by the above fractures in earlier Cretaceous, afterward, series deposits such as Guantou formation (K1g), Chaochuan formation (K1c) and Fangyan formation (K1f) which belong to Yongkang group, the lower Cretaceous layer accumulated in the Xiakou basin. In late Cretaceous, the above fractures occurred to extrude and the basin began to uplift, meanwhile, amounts of tension fissures and joints were produced since Cenozoic, which accelerated water-dicing into bed-rock. Consequently, landform-building processing: weathering, eroding and collapsing etc. were prevalent as finally to develop the so-called Danxia landform. The Jianglang Mountain landscape zone of the Danxia landform to apply for world natural relics are relying on unique and unparalleled peak, sky-split valley with vivid stones and reviving of platform. What is more, there is significance of study at lithology, stratigraphy and paleo-biology. According to dating for specimen of ophitic vein through-crossing the Yongkang group of Yafeng Peak by K-Ar method, this article revealed the uplift age of red-bed basin to be 77.89±2.6 MaBP (K2) i.e. late Cretaceous, and it is the first chronological datum of Danxia landform research in China.展开更多
The prominent types of Danxia landform in Fangyan include enclosed valleys, mesas, peaks, stone columns and grooves etc. Their spatial combinations have regular configurations along the northwest–southeast direction:...The prominent types of Danxia landform in Fangyan include enclosed valleys, mesas, peaks, stone columns and grooves etc. Their spatial combinations have regular configurations along the northwest–southeast direction: typical grooves and caves are located in the northwestern Wufengshuyuan mainly; abundant fresh collapsed stones may be observed in central Jimingfeng and Taohuafeng; stone drums and stone columns are in the southeastern Shiguliao particularly; enclosed valleys are encircling joints of peaks and plains from three directions east, west, and south. Their spatial combinations reflect that the developments of Danxia landform have undergone stages of geomorphic cyclical erosion in the form of weathering, collapse, transportation, sedimentation and other processes, together with the "sculpture" of external forces mainly as tectonic uplift. The picturesque Danxia landform began its formation at that point. Danxia landform developed mainly in the strata of Fangyan Formation (K1f) caused by the alluvial fan-braided river phase of anterior fan in the late period of the Early Cretaceous. Regular patterns of weathering of stones and features of braided alluvial phase sediments may be verified by the analysis of three groups of experimental data. Danxia landform of Fangyan is a unique representative of the "adolescent" development type in the application of the World Natural Heritages status in China, by virtue of its outstanding universal aesthetic and scientific value.展开更多
The Danxia landform of Qiyun Mountain is mainly developed on the red granule conglomerates named Xiaoyan Group (K2x^1) of middle Cretaceous series, which is controlled mainly by three faulted zones, namely, Jingdezh...The Danxia landform of Qiyun Mountain is mainly developed on the red granule conglomerates named Xiaoyan Group (K2x^1) of middle Cretaceous series, which is controlled mainly by three faulted zones, namely, Jingdezhen-Qimen faulted zone, Jiangwan-Jiekou compressional faulted zone and Kaihua-Chun'an folding faulted zone. During the Cretaceous period, this area firstly experienced massif subsidence to become a continental faulted basin, then having thick Cretaceous red sediments accumulated on it. In the supervened neotectonism, this area experienced an uplifting process, which made the thick Cretaceous sediments into a mountain with an altitude of 500-600 m. After undergoing the processes of vertical joint development, weathering, denudation and transportation, as well as evidently differential weathering and denudation influenced by lithology and structure between sandstone and conglomerate, the grand Danxia landscape consisting of peak forests, steep cliffs, caves, mesas, castellated peaks, natural bridges and so on formed. The three nick points located respectively at 585 m, 400 m and 150 m generally reflect the three dominated uplifting processes during the neotectonism.展开更多
The formation of Danxia landscapes is too slow to be observed in our life time and the paleoclimates in which Danxia landscapes developed are significantly different from the present. Thus, this study adopted experime...The formation of Danxia landscapes is too slow to be observed in our life time and the paleoclimates in which Danxia landscapes developed are significantly different from the present. Thus, this study adopted experimental approaches to examine the lithological and paleoclimatic control on the formation of various landscape morphologies in the Mt. Danxiashan, South China. A total of 122 rock samples were collected from a range of Danxia landscape morphologies such as white spots, small and large through caves, honeycomb caves, horizontal grooves, natural bridges, stone pillars, and squama stones. Analyses of the collected samples were conducted in different kinds of experiments, including uniaxial mechanical strength testing; rock resistance against sulfuric acid erosion, freezing, and thawing; X-ray fluorescence spectrometry(XRF) analysis; inductively coupled plasma mass spectrometry(ICP-MS) analysis; and identification analysis under a polarizing microscope. The results indicated that the formation of the various Danxia landscape morphologies could result from one or more of the following processes: differential erosion due to lithological difference, chemical dissolution and recrystallization, freezing and thawing actions, acid corrosion, weathering, lateral erosion of river flows, and tectonic uplifts. Water erosion in humid monsoon climate and the alternations of intensive freezing and thawing actions in the Quaternary glacial stages and the interglacial stages could have had great influences on the formation of Danxia landscape topographies.展开更多
基金N ationalN aturalScience Foundation ofChina,N o.48970006
文摘Danxia geomorphology originates fi'om China. This paper studies the spatial distribution and differences in characteristics of Danxia landforms. Based on relevant research and investigations, three congregated areas of Danxia landform in China are discussed in this paper. They are the southeast area (including Jiangxi, Fujian, Zhejiang, Hunan and Guangxi provinces), the southwest area (the transitional zone of Yunnan-Guizhou Plateau and Sichuan Basin) and the northwest area (including Longshan mountain and along the banks of the Huanghe River and its anabranches). Not only the conditions of geology and geography of the three areas but also the differences of Danxia landforms of the three areas are analyzed. The Danxia landscape, characterized by upright-shaped peaks, Danxia mesa, stone wall, cave and vertical cave, "Danxia natural bridge", "a narrow strip of sky" and so on, often presents in the southeast area. The landscape of southwest area is characterized by Danxia escarpment faces and waterfalls. In the northwest area, the Danxia landscape has the traits of arid areas simultaneously, for example, mud-coating type, columniation type, board type, moreover, it is greatly different between these environmental factors such as the microclimate, water, wind, and the loess cover. Finally it explores the causes which lead differences in landform and also explains the landform formation process and its mechanism with reference to the rates of crustal uplift, the tectonic red-basin, and the external processes including working of running water, weathering, biogenic, gravity in each area of Danxia Landforms in China.
基金This research was funded by the National Natural Science Foundation of China(42077282).
文摘Since 2015,the newly discovered slit-type Danxia landform on the Chinese Loess Plateau has become a hot topic in the field of geomorphology worldwide.However,the relationships among its formation,evolutionary mechanism,and mechanical characteristics of its strata and rocks are not clear.In this paper,the Ganquan canyon group is used as the research object.Basic physical and mechanical indices of sandstone in the Ganquan canyon group were measured through field investigation and indoor experiments,and the deterioration trends for the mechanical parameters of sandstone in this area under the action of infiltration,acid dry-wet cycles,and freeze-thaw cycles were revealed.Lastly,the formation and evolutionary mechanism of the slit-type Danxia landform were discussed.The results showed that:(1)The sandstone in the canyon group had a low cementation degree and weak cohesive force,which was easily weakened under the action of water,resulting in a decrease in compressive strength and elastic modulus.(2)Acidic dry-wet cycles caused the mineral composition of the sandstone to be dissolved,and the micropores continued to grow and develop until new cracks were produced.Macroscopically,the compressive strength and elastic modulus of sandstone were greatly reduced,and this damage was cumulative and staged.The greater the acidity,the greater the damage.(3)As the number of freeze-thaw cycles increased,the uniaxial compressive strength and elastic modulus of the sandstone decreased continuously.During the freeze-thaw cycle process,the growth and development of cracks were primarily in fracture mode and usually developed along parallel bedding positions.(4)The interaction of tectonic activity and lithology with different weathering processes was a key factor in the formation and evolution of the slit-type Danxia landform.In conclusion,the intricate process of weathering influenced by historical climatic fluctuations has been pivotal in shaping the topography of Danxia landform.
基金supported by the National Natural Science Foundation of China (Grant No. 41602113)the Open Research Fund fromthe State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China University of Technology) (Grant No. NRE1605)
文摘The Jianglangshan Geopark in the western Zhejiang Province of Southeast China is well-known for its spectacular red-colored sandstone landforms. Little is known about the depositional processes of the conglomerate-dominated Fangyan Formation, the lithologic base of the Danxia landforms in this geopark. Based on detailed field investigation of lithology, sedimentary structures, bed thickness and geometry, five facies are recognized: facies A(matrixsupported cobble conglomerate), facies B(pebble conglomerate), facies C(pebbly sandstone), facies D(fine-grained sandstone) and facies E(mudstone). The results show that streamflow-dominated fans were the main depositional processes responsible for the accumulation of the Fangyan Formation along the mountain fronts. These fan conglomerates form the base for the evolution of the Danxia landscapes owing to the uplift and erosion of the study area. In contrast, the fine-grained sedimentary successions produced by fluvial floodplains in the distal part of the fans were thinner and more easily weathered. Such sedimentary facies distribution patterns were thought to be similar during Late Cretaceous across Southeast China. The Danxia landforms are largely the geographical expressions of the conglomerate-dominated redbeds in the proximal-middle fans.
基金National Natural Science Foundation of China, No.40871014The Open Foundation of the State Key Labo-ratory of Loess and Quaternary Geology from the Institute of Earth Environment, CAS, No.SKLLQG0817+2 种基金The Training Foundation of National Basis of Talents, No.J0630535Foundation of Application of the World Natural Heritage from Zhejiang ProvinceFoundation of Modern Analyses Center of Nanjing University
文摘Jianglang Mountain is situated at the transitional zone of South China fold-system, Jiangshan-Shaoxing deep fracture zone and Baoan-Xiakou-Zhangcun fracture zone. The forming of the Xiakou basin was attributed to the pull-apart fault depression by the above fractures in earlier Cretaceous, afterward, series deposits such as Guantou formation (K1g), Chaochuan formation (K1c) and Fangyan formation (K1f) which belong to Yongkang group, the lower Cretaceous layer accumulated in the Xiakou basin. In late Cretaceous, the above fractures occurred to extrude and the basin began to uplift, meanwhile, amounts of tension fissures and joints were produced since Cenozoic, which accelerated water-dicing into bed-rock. Consequently, landform-building processing: weathering, eroding and collapsing etc. were prevalent as finally to develop the so-called Danxia landform. The Jianglang Mountain landscape zone of the Danxia landform to apply for world natural relics are relying on unique and unparalleled peak, sky-split valley with vivid stones and reviving of platform. What is more, there is significance of study at lithology, stratigraphy and paleo-biology. According to dating for specimen of ophitic vein through-crossing the Yongkang group of Yafeng Peak by K-Ar method, this article revealed the uplift age of red-bed basin to be 77.89±2.6 MaBP (K2) i.e. late Cretaceous, and it is the first chronological datum of Danxia landform research in China.
基金National Natural Science Foundation of China, No.40871014The Open Foundation of the State Key Labo-ratory of Loess and Quaternary Geology from the Institute of Earth Environment, CAS, No.SKLLQG0817+1 种基金The Training Foundation of National Basis of Talents, No.J0630535Project of Application World Natural Heritages of Construction Bureau of Zhejiang Province, The Test Foundation of Modern Analyses Center of Nanjing University
文摘The prominent types of Danxia landform in Fangyan include enclosed valleys, mesas, peaks, stone columns and grooves etc. Their spatial combinations have regular configurations along the northwest–southeast direction: typical grooves and caves are located in the northwestern Wufengshuyuan mainly; abundant fresh collapsed stones may be observed in central Jimingfeng and Taohuafeng; stone drums and stone columns are in the southeastern Shiguliao particularly; enclosed valleys are encircling joints of peaks and plains from three directions east, west, and south. Their spatial combinations reflect that the developments of Danxia landform have undergone stages of geomorphic cyclical erosion in the form of weathering, collapse, transportation, sedimentation and other processes, together with the "sculpture" of external forces mainly as tectonic uplift. The picturesque Danxia landform began its formation at that point. Danxia landform developed mainly in the strata of Fangyan Formation (K1f) caused by the alluvial fan-braided river phase of anterior fan in the late period of the Early Cretaceous. Regular patterns of weathering of stones and features of braided alluvial phase sediments may be verified by the analysis of three groups of experimental data. Danxia landform of Fangyan is a unique representative of the "adolescent" development type in the application of the World Natural Heritages status in China, by virtue of its outstanding universal aesthetic and scientific value.
基金National Natural Science Foundation of China, No.0209131086 Doctoral Fund for Colleges and Universities of Ministry of Education, No.20050284011"985 Project" construction of Physical Geography for Nanjing University and Foundation of Modern Analyses Center of Nanjing University
文摘The Danxia landform of Qiyun Mountain is mainly developed on the red granule conglomerates named Xiaoyan Group (K2x^1) of middle Cretaceous series, which is controlled mainly by three faulted zones, namely, Jingdezhen-Qimen faulted zone, Jiangwan-Jiekou compressional faulted zone and Kaihua-Chun'an folding faulted zone. During the Cretaceous period, this area firstly experienced massif subsidence to become a continental faulted basin, then having thick Cretaceous red sediments accumulated on it. In the supervened neotectonism, this area experienced an uplifting process, which made the thick Cretaceous sediments into a mountain with an altitude of 500-600 m. After undergoing the processes of vertical joint development, weathering, denudation and transportation, as well as evidently differential weathering and denudation influenced by lithology and structure between sandstone and conglomerate, the grand Danxia landscape consisting of peak forests, steep cliffs, caves, mesas, castellated peaks, natural bridges and so on formed. The three nick points located respectively at 585 m, 400 m and 150 m generally reflect the three dominated uplifting processes during the neotectonism.
基金National Natural Science Foundation of China, No.41371204 No.41171163+6 种基金 No.41401216 National Science and Technology Basic Special Key Project, No.2013FY 11 1900 Foundation of State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, CAS, No.SKLLQG1206 No.SKLLQG1422 National Basic Science Personnel Training Project, No.J1103408 Foundation of Modern Analysis Center, Nanjing University, No.0422171010 Priority Academic Program Development of Jiangsu Higher Education Institutions, No.PAPD,Acknowledgements We appreciate the laboratory and field assistance of KONG Qingyou, LIU Di, YANG Li, WANG Xiaocui, FU Jingcheng, LIANG Guomin, MAO Xiaodong, FAN Dengfeng, LUO Jiehong, WU Huaan, TAN Ming, DAI Huibao, and XIE Zhangzhen.
文摘The formation of Danxia landscapes is too slow to be observed in our life time and the paleoclimates in which Danxia landscapes developed are significantly different from the present. Thus, this study adopted experimental approaches to examine the lithological and paleoclimatic control on the formation of various landscape morphologies in the Mt. Danxiashan, South China. A total of 122 rock samples were collected from a range of Danxia landscape morphologies such as white spots, small and large through caves, honeycomb caves, horizontal grooves, natural bridges, stone pillars, and squama stones. Analyses of the collected samples were conducted in different kinds of experiments, including uniaxial mechanical strength testing; rock resistance against sulfuric acid erosion, freezing, and thawing; X-ray fluorescence spectrometry(XRF) analysis; inductively coupled plasma mass spectrometry(ICP-MS) analysis; and identification analysis under a polarizing microscope. The results indicated that the formation of the various Danxia landscape morphologies could result from one or more of the following processes: differential erosion due to lithological difference, chemical dissolution and recrystallization, freezing and thawing actions, acid corrosion, weathering, lateral erosion of river flows, and tectonic uplifts. Water erosion in humid monsoon climate and the alternations of intensive freezing and thawing actions in the Quaternary glacial stages and the interglacial stages could have had great influences on the formation of Danxia landscape topographies.