We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencod...We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencoders(AEs). We analyze image reconstruction and classification performance for different channel noise powers, latent vector sizes, and number of quantization bits used for the latent variables as well as AEs’ parameters. The results show that the digital transmission of latent representations using conventional AEs alone is extremely vulnerable to channel noise and quantization effects. We then propose a combination of basic AE and a denoising autoencoder(DAE) to denoise the corrupted latent vectors at the receiver. This approach demonstrates robustness against channel noise and quantization effects and enables a significant improvement in image reconstruction and classification performance particularly in adverse scenarios with high noise powers and significant quantization effects.展开更多
There exist three synchronizing problems in the bistatic radar system that some signals of the radar receiver must be synchronized with those of the radar transmitter. Several methods realizing data transmission, whic...There exist three synchronizing problems in the bistatic radar system that some signals of the radar receiver must be synchronized with those of the radar transmitter. Several methods realizing data transmission, which are used to complete the synchronization existing in the bistatic radar system, are described. Then a new idea is brought forward that employs space laser communication in the bistatic radar system to realize its data transmission. The theoretic analysis of the idea's usability and its merits are discussed in details. Finally the latest development of space laser communication is introduced, and the utility of the idea is pointed out further.展开更多
In order to secure the massive heterogeneous medical data for the complex scenarios and improve the information sharing efficiency in healthcare system,a distributed medical data ledger model(DMDL)is proposed in this ...In order to secure the massive heterogeneous medical data for the complex scenarios and improve the information sharing efficiency in healthcare system,a distributed medical data ledger model(DMDL)is proposed in this paper.This DMDL model has adopted the blockchain technology including the function decoupling,the distributed consensus,smart contract as well as multi-channel communication structure of consortium blockchain.The DMDL model not only has high adaptability,but also meets the requirements of the medical treatment processes which generally involve multientities,highly private information and secure transaction.The steps for processing the medical data are also introduced.Additionally,the methods for the definition and application of the DMDL model are presented for three specific medical scenarios,i.e.,the management of the heterogeneous data,copyright protection for medical data and the secure utilization of sensitive data.The advantage of the proposed DMDL model is demonstrated by comparing with the models which are being currently adopted in healthcare system.展开更多
Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)...Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)communication systems often encounters the challenge of time-varying channels.This paper proposes a time-varying channel tracking method for short-range high-rate UWA FBMC-OQAM communication applications.First,a known preamble is used to initialize the channel estimation at the initial time of the signal block.Next,the estimated channel is applied to detect data symbols at several symbol periods.The detected data symbols are then reused as new pilots to estimate the next time channel.In the above steps,the unified transmission matrix model is extended to describe the time-varying channel input-output model in this paper and is used for symbol detection.Simulation results show that the channel tracking error can be reduced to less than−20 dB when the channel temporal coherence coefficient exceeds 0.75 within one block period of FBMC-OQAM signals.Compared with conventional known-pilot-based methods,the proposed method needs lower system overhead while exhibiting similar time-varying channel tracking performance.The sea trial results further proved the practicability of the proposed method.展开更多
Driven by the huge demand to explore oceans, underwater wireless communications have been rapidly developed in the past few decades. Due to the complex physical characteristics of water, acoustic wave is the only medi...Driven by the huge demand to explore oceans, underwater wireless communications have been rapidly developed in the past few decades. Due to the complex physical characteristics of water, acoustic wave is the only media available for underwater wireless communication at any distance. As a result, underwater acoustic communication(UAC) is the major research field in underwater wireless communication. In this paper, characteristics of underwater acoustic channels are first introduced and compared with terrestrial communication to demonstrate the difficulties in UAC research. To give a general impression of the UAC, current important research areas are mentioned. Furthermore, different principal modulation-based schemes for short-and medium-range communications with high data rates are investigated and summarized. To evaluate the performance of UAC systems in general,three criteria are presented based on the research publications and our years of experience in high-rate short-to medium-range communications. These three criteria provide useful tools to generally guide the design and evaluate the performance of underwater acoustic communication systems.展开更多
Visible light wavelength division multiplexing (VWDM) experiment was performed using polymer optical fiber (POF). Lights of two different wavelengths (650 and 530 nm) were sent to a single POF. Red light (650 n...Visible light wavelength division multiplexing (VWDM) experiment was performed using polymer optical fiber (POF). Lights of two different wavelengths (650 and 530 nm) were sent to a single POF. Red light (650 nm) was used for 100-Mb/s full duplex IP data transmission and green light (530 nm) was used for voice signal transmission. Light sources are light-emitting diodes (LEDs). A POF coupler (splitter) and the prisms were employed as multiplexer and demultiplexer, respectively. The channel isolation and insert loss were measured, which are 20.5 and 17.65 dB for 650-nm channel respectively, and 19.16 and 20.55 dB for 530 nm one respectively.展开更多
基金supported by Hong Kong Government general research fund (GRF) under project number PolyU152757/16ENational Natural Science Foundation China under project numbers 61435006 and 61401020
文摘We study the effects of quantization and additive white Gaussian noise(AWGN) in transmitting latent representations of images over a noisy communication channel. The latent representations are obtained using autoencoders(AEs). We analyze image reconstruction and classification performance for different channel noise powers, latent vector sizes, and number of quantization bits used for the latent variables as well as AEs’ parameters. The results show that the digital transmission of latent representations using conventional AEs alone is extremely vulnerable to channel noise and quantization effects. We then propose a combination of basic AE and a denoising autoencoder(DAE) to denoise the corrupted latent vectors at the receiver. This approach demonstrates robustness against channel noise and quantization effects and enables a significant improvement in image reconstruction and classification performance particularly in adverse scenarios with high noise powers and significant quantization effects.
文摘There exist three synchronizing problems in the bistatic radar system that some signals of the radar receiver must be synchronized with those of the radar transmitter. Several methods realizing data transmission, which are used to complete the synchronization existing in the bistatic radar system, are described. Then a new idea is brought forward that employs space laser communication in the bistatic radar system to realize its data transmission. The theoretic analysis of the idea's usability and its merits are discussed in details. Finally the latest development of space laser communication is introduced, and the utility of the idea is pointed out further.
文摘In order to secure the massive heterogeneous medical data for the complex scenarios and improve the information sharing efficiency in healthcare system,a distributed medical data ledger model(DMDL)is proposed in this paper.This DMDL model has adopted the blockchain technology including the function decoupling,the distributed consensus,smart contract as well as multi-channel communication structure of consortium blockchain.The DMDL model not only has high adaptability,but also meets the requirements of the medical treatment processes which generally involve multientities,highly private information and secure transaction.The steps for processing the medical data are also introduced.Additionally,the methods for the definition and application of the DMDL model are presented for three specific medical scenarios,i.e.,the management of the heterogeneous data,copyright protection for medical data and the secure utilization of sensitive data.The advantage of the proposed DMDL model is demonstrated by comparing with the models which are being currently adopted in healthcare system.
基金Supported by the National Natural Science Foundation of China under Grant Nos.62171405,62225114 and 62101489.
文摘Filter bank multicarrier(FBMC)systems with offset quadrature amplitude modulation(OQAM)need long data blocks to achieve high spectral efficiency.However,the transmission of long data blocks in underwater acoustic(UWA)communication systems often encounters the challenge of time-varying channels.This paper proposes a time-varying channel tracking method for short-range high-rate UWA FBMC-OQAM communication applications.First,a known preamble is used to initialize the channel estimation at the initial time of the signal block.Next,the estimated channel is applied to detect data symbols at several symbol periods.The detected data symbols are then reused as new pilots to estimate the next time channel.In the above steps,the unified transmission matrix model is extended to describe the time-varying channel input-output model in this paper and is used for symbol detection.Simulation results show that the channel tracking error can be reduced to less than−20 dB when the channel temporal coherence coefficient exceeds 0.75 within one block period of FBMC-OQAM signals.Compared with conventional known-pilot-based methods,the proposed method needs lower system overhead while exhibiting similar time-varying channel tracking performance.The sea trial results further proved the practicability of the proposed method.
基金Project supported by the National Key R&D Program of China(No.2016YFC1400200)the National Natural Science Foundation of China(Nos.61771396 and 61471298)
文摘Driven by the huge demand to explore oceans, underwater wireless communications have been rapidly developed in the past few decades. Due to the complex physical characteristics of water, acoustic wave is the only media available for underwater wireless communication at any distance. As a result, underwater acoustic communication(UAC) is the major research field in underwater wireless communication. In this paper, characteristics of underwater acoustic channels are first introduced and compared with terrestrial communication to demonstrate the difficulties in UAC research. To give a general impression of the UAC, current important research areas are mentioned. Furthermore, different principal modulation-based schemes for short-and medium-range communications with high data rates are investigated and summarized. To evaluate the performance of UAC systems in general,three criteria are presented based on the research publications and our years of experience in high-rate short-to medium-range communications. These three criteria provide useful tools to generally guide the design and evaluate the performance of underwater acoustic communication systems.
基金This work was supported by the National Natural ScienceFoundation of China (No. 90201013) and the ProvincialNatural Science Foundation of Anhui (No. 03042402).
文摘Visible light wavelength division multiplexing (VWDM) experiment was performed using polymer optical fiber (POF). Lights of two different wavelengths (650 and 530 nm) were sent to a single POF. Red light (650 nm) was used for 100-Mb/s full duplex IP data transmission and green light (530 nm) was used for voice signal transmission. Light sources are light-emitting diodes (LEDs). A POF coupler (splitter) and the prisms were employed as multiplexer and demultiplexer, respectively. The channel isolation and insert loss were measured, which are 20.5 and 17.65 dB for 650-nm channel respectively, and 19.16 and 20.55 dB for 530 nm one respectively.