期刊文献+
共找到4,151篇文章
< 1 2 208 >
每页显示 20 50 100
Accurate method based on data filtering for quantitative multi-element analysis of soils using CF-LIBS
1
作者 韩伟伟 孙对兄 +7 位作者 张国鼎 董光辉 崔小娜 申金成 王浩亮 张登红 董晨钟 苏茂根 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期149-158,共10页
To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis o... To obtain more stable spectral data for accurate quantitative analysis of multi-element,especially for the large-area in-situ elements detection of soils, we propose a method for a multielement quantitative analysis of soils using calibration-free laser-induced breakdown spectroscopy(CF-LIBS) based on data filtering. In this study, we analyze a standard soil sample doped with two heavy metal elements, Cu and Cd, with a specific focus on the line of Cu I324.75 nm for filtering the experimental data of multiple sample sets. Pre-and post-data filtering,the relative standard deviation for Cu decreased from 30% to 10%, The limits of detection(LOD)values for Cu and Cd decreased by 5% and 4%, respectively. Through CF-LIBS, a quantitative analysis was conducted to determine the relative content of elements in soils. Using Cu as a reference, the concentration of Cd was accurately calculated. The results show that post-data filtering, the average relative error of the Cd decreases from 11% to 5%, indicating the effectiveness of data filtering in improving the accuracy of quantitative analysis. Moreover, the content of Si, Fe and other elements can be accurately calculated using this method. To further correct the calculation, the results for Cd was used to provide a more precise calculation. This approach is of great importance for the large-area in-situ heavy metals and trace elements detection in soil, as well as for rapid and accurate quantitative analysis. 展开更多
关键词 laser-induced breakdown spectroscopy SOIL data filtering quantitative analysis multielement
下载PDF
The Complete K-Level Tree and Its Application to Data Warehouse Filtering
2
作者 马琳 Wang Kuanquan +1 位作者 Li Haifeng Zucker J D 《High Technology Letters》 EI CAS 2003年第4期13-16,共4页
This paper presents a simple complete K level tree (CKT) architecture for text database organization and rapid data filtering. A database is constructed as a CKT forest and each CKT contains data of the same length. T... This paper presents a simple complete K level tree (CKT) architecture for text database organization and rapid data filtering. A database is constructed as a CKT forest and each CKT contains data of the same length. The maximum depth and the minimum depth of an individual CKT are equal and identical to data’s length. Insertion and deletion operations are defined; storage method and filtering algorithm are also designed for good compensation between efficiency and complexity. Applications to computer aided teaching of Chinese and protein selection show that an about 30% reduction of storage consumption and an over 60% reduction of computation may be easily obtained. 展开更多
关键词 complete K level tree data warehouse organization data filtering data retrieval
下载PDF
Research on Kalman-filter based multisensor data fusion 被引量:12
3
作者 Chen Yukun Si Xicai Li Zhigang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期497-502,共6页
Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigat... Multisensor data fusion has played a significant role in diverse areas ranging from local robot guidance to global military theatre defense etc. Various multisensor data fusion methods have been extensively investigated by researchers, of which Klaman filtering is one of the most important. Kalman filtering is the best-known recursive least mean-square algorithm to optimally estimate the unknown states of a dynamic system, which has found widespread application in many areas. The scope of the work is restricted to investigate the various data fusion and track fusion techniques based on the Kalman Filter methods, then a new method of state fusion is proposed. Finally the simulation results demonstrate the effectiveness of the introduced method. 展开更多
关键词 MULTISENSOR data fusion Kalman filter.
下载PDF
An Adaptive Estimation of Forecast Error Covariance Parameters for Kalman Filtering Data Assimilation 被引量:7
4
作者 Xiaogu ZHENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期154-160,共7页
An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assim- ilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts.... An adaptive estimation of forecast error covariance matrices is proposed for Kalman filtering data assim- ilation. A forecast error covariance matrix is initially estimated using an ensemble of perturbation forecasts. This initially estimated matrix is then adjusted with scale parameters that are adaptively estimated by minimizing -2log-likelihood of observed-minus-forecast residuals. The proposed approach could be applied to Kalman filtering data assimilation with imperfect models when the model error statistics are not known. A simple nonlinear model (Burgers' equation model) is used to demonstrate the efficacy of the proposed approach. 展开更多
关键词 data assimilation Kahnan filter ensemble prediction ESTIMATION
下载PDF
Particle Filter Data Fusion Enhancements for MEMS-IMU/GPS 被引量:2
5
作者 Yafei Ren Xizhen Ke 《Intelligent Information Management》 2010年第7期417-421,共5页
This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the larg... This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-linear non-Gaussian dynamic models of the inertial sensors, the methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. Then Particle Filtering (PF) can be used to data fusion of the inertial information and real-time updates from the GPS location and speed of information accurately. The experiments show that PF as opposed to EKF is more effective in raising MEMS-IMU/GPS navigation system’s data integration accuracy. 展开更多
关键词 Micro-Electro-Mechanical-System Particle filter data Fusion Extended KALMAN filterING
下载PDF
Application of S-transform threshold filtering in Anhui experiment airgun sounding data de-noising 被引量:1
6
作者 Chenglong Zheng Xiaofeng Tian +2 位作者 Zhuoxin Yang Shuaijun Wang Zhenyu Fan 《Geodesy and Geodynamics》 2018年第4期320-327,共8页
As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following charac... As a relatively new method of processing non-stationary signal with high time-frequency resolution, S transform can be used to analyze the time-frequency characteristics of seismic signals. It has the following characteristics: its time-frequency resolution corresponding to the signal frequency, reversible inverse transform, basic wavelet that does not have to meet the permit conditions. We combined the threshold method, proposed the S-transform threshold filtering on the basis of S transform timefrequency filtering, and processed airgun seismic records from temporary stations in "Yangtze Program"(the Anhui experiment). Compared with the results of the bandpass filtering, the S transform threshold filtering can improve the signal to noise ratio(SNR) of seismic waves and provide effective help for first arrival pickup and accurate travel time. The first arrival wave seismic phase can be traced farther continuously, and the Pm seismic phase in the subsequent zone is also highlighted. 展开更多
关键词 S transform Time-frequency filtering Airgun data Threshold filtering DE-NOISING
下载PDF
Distributed multisensor data fusion based on Kalman filtering and the parallel implementation 被引量:1
7
作者 郭强 郁松年 《Journal of Shanghai University(English Edition)》 CAS 2006年第2期118-122,共5页
The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In t... The purpose of data fusion is to produce an improved model or estimate of a system from a set of independent data sources. Various multisensor data fusion approaches exist, in which Kalman filtering is important. In this paper, a fusion algorithm based on multisensor systems is discussed and a distributed multisensor data fusion algorithm based on Kalman filtering presented. The algorithm has been implemented on cluster-based high performance computers. Experimental results show that the method produces precise estimation in considerably reduced execution time. 展开更多
关键词 data fusion Kalman filtering multisensor systems distributed estimation.
下载PDF
Coupling Ensemble Kalman Filter with Four-dimensional Variational Data Assimilation 被引量:26
8
作者 Fuqing ZHANG Meng ZHANG James A. HANSEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第1期1-8,共8页
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assim... This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations. 展开更多
关键词 data assimilation four-dimensional variational data assimilation ensemble Kalman filter Lorenz model hybrid method
下载PDF
A Data-Adaptive Filter of the Tahiti-Darwin Southern Oscillation Index and the Associate Scheme of Filling Data Gaps
9
作者 张邦林 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1994年第4期447-458,共12页
The Tahiti-Darwin Southern Oscillation index provided by Climate Analysis Center of USA has been used in numerous studies. But, it has some deficiency. It contains noise mainly due to high month-to-month variability. ... The Tahiti-Darwin Southern Oscillation index provided by Climate Analysis Center of USA has been used in numerous studies. But, it has some deficiency. It contains noise mainly due to high month-to-month variability. In order to reduce the level of noise in the SO index, this paper introduces a fully data-adaptive filter based on singular spectrum analysis. Another interesting aspect of the filter is that it can be used to fill data gaps of the SO index by an iterative process. Eventually, a noiseless long-period data series without any gaps is obtained. 展开更多
关键词 Southern Oscillation index data-adaptive filter Scheme of filling data gaps Iterative process
下载PDF
Data assimilation using support vector machines and ensemble Kalman filter for multi-layer soil moisture prediction 被引量:1
10
作者 Di LIU Zhong-bo YU Hai-shen LV 《Water Science and Engineering》 EI CAS 2010年第4期361-377,共17页
Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter... Hybrid data assimilation (DA) is a method seeing more use in recent hydrology and water resources research. In this study, a DA method coupled with the support vector machines (SVMs) and the ensemble Kalman filter (EnKF) technology was used for the prediction of soil moisture in different soil layers: 0-5 cm, 30 cm, 50 cm, 100 cm, 200 cm, and 300 cm. The SVM methodology was first used to train the ground measurements of soil moisture and meteorological parameters from the Meilin study area, in East China, to construct soil moisture statistical prediction models. Subsequent observations and their statistics were used for predictions, with two approaches: the SVM predictor and the SVM-EnKF model made by coupling the SVM model with the EnKF technique using the DA method. Validation results showed that the proposed SVM-EnKF model can improve the prediction results of soil moisture in different layers, from the surface to the root zone. 展开更多
关键词 data assimilation support vector machines ensemble Kalman filter soil moisture
下载PDF
Fast Rate Fault Detection Filter for Multirate Sampled-data Systems 被引量:3
11
作者 ZHONG Mai-Ying MA Chuan-Feng LIU Yun-Xia 《自动化学报》 EI CSCD 北大核心 2006年第3期433-437,共5页
This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant disc... This paper focuses on the fast rate fault detection filter (FDF) problem for a class of multirate sampled-data (MSD) systems. A lifting technique is used to convert such an MSD system into a linear time-invariant discrete-time one and an unknown input observer (UIO) is considered as FDF to generate residual. The design of FDF is formulated as an H∞ optimization problem and a solvable condition as well as an optimal solution are derived. The causality of the residual generator can be guaranteed so that the fast rate residual can be implemented via inverse lifting. A numerical example is included to demonstrate the feasibility of the obtained results. 展开更多
关键词 故障检测 滤波器 FDF 残差 MSD系统
下载PDF
ROBUST FILTERS WITH SAMPLED-DATA ESTIMATION COVARANCE CONSTRAINT FOR UNCERTAIN CONTINUOUS-TIME SYSTEMS
12
作者 霍沛军 王子栋 郭治 《Journal of Shanghai Jiaotong university(Science)》 EI 1999年第1期39-44,共6页
This paper was concerned with the problem of robust sampled data state estimation for uncertain continuous time systems. A sampled data estimation covariance is given by taking intersample behaviour into account. T... This paper was concerned with the problem of robust sampled data state estimation for uncertain continuous time systems. A sampled data estimation covariance is given by taking intersample behaviour into account. The primary purpose of this paper is to design robust discrete time Kalman filters such that the sampled data estimation covariance is not more than a prespecified value, and therefore the error variances achieve the desired constraints. It is shown that the addressed problem can be converted into a similar problem for a fictitious discrete time system. The existence conditions and the explicit expression of desired filters were both derived. Finally, a simple example was presented to demonstrate the effectiveness of the proposed design procedure. 展开更多
关键词 UNCERTAIN SYSTEMS continuous time SYSTEMS ROBUST filterS sampled data ESTIMATION covariance intersample behaviour
下载PDF
MODEL RECONSTRUCTION FROM CLOUD DATA FOR RAPID PROTOTYPE MANUFACTURING 被引量:1
13
作者 张丽艳 周儒荣 周来水 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2001年第2期170-175,共6页
Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes... Model reconstruction from points scanned on existing physical objects is much important in a variety of situations such as reverse engineering for mechanical products, computer vision and recovery of biological shapes from two dimensional contours. With the development of measuring equipment, cloud points that contain more details of the object can be obtained conveniently. On the other hand, large quantity of sampled points brings difficulties to model reconstruction method. This paper first presents an algorithm to automatically reduce the number of cloud points under given tolerance. Triangle mesh surface from the simplified data set is reconstructed by the marching cubes algorithm. For various reasons, reconstructed mesh usually contains unwanted holes. An approach to create new triangles is proposed with optimized shape for covering the unexpected holes in triangle meshes. After hole filling, watertight triangle mesh can be directly output in STL format, which is widely used in rapid prototype manufacturing. Practical examples are included to demonstrate the method. 展开更多
关键词 reverse engineering model reconstruction cloud data data filtering hole filling
下载PDF
State Estimation for Non-linear Sampled-Data Descriptor Systems:A Robust Extended Kalman Filtering Approach
14
作者 Mao Wang Tiantian Liang Zhenhua Zhou 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第5期24-31,共8页
This paper proposes a state estimation method for a class of norm bounded non linear sampled data descriptor systems using the Kalman filtering method. The descriptor model is firstly discretized to obtain a discrete ... This paper proposes a state estimation method for a class of norm bounded non linear sampled data descriptor systems using the Kalman filtering method. The descriptor model is firstly discretized to obtain a discrete time non singular one. Then a model of robust extended Kalman filter is proposed for the state estimation based on the discretized non linear non singular system. As parameters are introduced in for transforming descriptor systems into non singular ones there exist uncertainties in the state of the systems. To solve this problem an optimized upper bound is proposed so that the convergence of the estimation error co variance matrix is guaranteed in the paper. A simulating example is proposed to verify the validity of this method at last. 展开更多
关键词 SAMPLED-data SYSTEM DESCRIPTOR SYSTEM state estimation KALMAN filterING REKF
下载PDF
Reservoir Multiscale Data Assimilation Using the Ensemble Kalman Filter
15
作者 Santha R. Akella 《Applied Mathematics》 2011年第2期165-180,共16页
In this paper we propose a way to integrate data at different spatial scales using the ensemble Kalman filter (EnKF), such that the finest scale data is sequentially estimated, subject to the available data at the coa... In this paper we propose a way to integrate data at different spatial scales using the ensemble Kalman filter (EnKF), such that the finest scale data is sequentially estimated, subject to the available data at the coarse scale (s), as an additional constraint. Relationship between various scales has been modeled via upscaling techniques. The proposed coarse-scale EnKF algorithm is recursive and easily implementable. Our numerical results with the coarse-scale data provide improved fine-scale field estimates when compared to the results with regular EnKF (which did not incorporate the coarse-scale data). We also tested our algorithm with various precisions of the coarse-scale data to account for the inexact relationship between the fine and coarse scale data. As expected, the results show that higher precision in the coarse-scale data, yielded improved estimates. 展开更多
关键词 KALMAN filter RESERVOIR ENGINEERING UNCERTAINTY Quantification Multiscale data
下载PDF
Links between Kalman Filtering and Data Assimilation with Generalized Least Squares
16
作者 William Menke 《Applied Mathematics》 2022年第6期566-584,共19页
Kalman filtering (KF) is a popular form of data assimilation, especially in real-time applications. It combines observations with an equation that describes the dynamic evolution of a system to produce an estimate of ... Kalman filtering (KF) is a popular form of data assimilation, especially in real-time applications. It combines observations with an equation that describes the dynamic evolution of a system to produce an estimate of its present-time state. Although KF does not use future information in producing an estimate of the state vector, later reanalysis of the archival data set can produce an improved estimate, in which all data, past, present and future, contribute. We examine the case in which the reanalysis is performed using generalized least squares (GLS), and establish the relationship between the real-time Kalman estimate and the GLS reanalysis. We show that the KF solution at a given time is equal to the GLS solution that one would obtain if data excluded future times. Furthermore, we show that the recursive procedure in KF is exactly equivalent to the solution of the GLS problem via Thomas’ algorithm for solving the block-tridiagonal matrix that arises in the reanalysis problem. This connection suggests that GLS reanalysis is better considered the final step of a single process, rather than a “different method” arbitrarily being applied, post factor. The connection also allows the concept of resolution, so important in other areas of inverse theory, to be applied to KF formulations. In an exemplary thermal diffusion problem, model resolution is found to be somewhat localized in both time and space, but with an extremely rough averaging kernel. 展开更多
关键词 Kalman filter Generalized Least Squares Bayesian Inference data Assimilation REAL-TIME RESOLUTION
下载PDF
Data Analysis Methods and Signal Processing Techniques in Gravitational Wave Detection
17
作者 Bojun Yan 《Journal of Applied Mathematics and Physics》 2024年第11期3774-3783,共10页
Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive r... Gravitational wave detection is one of the most cutting-edge research areas in modern physics, with its success relying on advanced data analysis and signal processing techniques. This study provides a comprehensive review of data analysis methods and signal processing techniques in gravitational wave detection. The research begins by introducing the characteristics of gravitational wave signals and the challenges faced in their detection, such as extremely low signal-to-noise ratios and complex noise backgrounds. It then systematically analyzes the application of time-frequency analysis methods in extracting transient gravitational wave signals, including wavelet transforms and Hilbert-Huang transforms. The study focuses on discussing the crucial role of matched filtering techniques in improving signal detection sensitivity and explores strategies for template bank optimization. Additionally, the research evaluates the potential of machine learning algorithms, especially deep learning networks, in rapidly identifying and classifying gravitational wave events. The study also analyzes the application of Bayesian inference methods in parameter estimation and model selection, as well as their advantages in handling uncertainties. However, the research also points out the challenges faced by current technologies, such as dealing with non-Gaussian noise and improving computational efficiency. To address these issues, the study proposes a hybrid analysis framework combining physical models and data-driven methods. Finally, the research looks ahead to the potential applications of quantum computing in future gravitational wave data analysis. This study provides a comprehensive theoretical foundation for the optimization and innovation of gravitational wave data analysis methods, contributing to the advancement of gravitational wave astronomy. 展开更多
关键词 Gravitational Wave Detection data Analysis Signal Processing Matched filtering Machine Learning
下载PDF
Time-domain identification of dynamic properties of layered soil by using extended Kalman filter and recorded seismic data 被引量:3
18
作者 郑亦斌 王满生 +2 位作者 刘荷 姚英 周锡元 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第2期237-247,共11页
A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequ... A novel time-domain identification technique is developed for the seismic response analysis of soil-structure interaction.A two-degree-of-freedom (2DOF) model with eight lumped parameters is adopted to model the frequency- dependent behavior of soils.For layered soil,the equivalent eight parameters of the 2DOF model are identified by the extended Kalman filter (EKF) method using recorded seismic data.The polynomial approximations for derivation of state estimators are applied in the EKF procedure.A realistic identification example is given for the layered-soil of a building site in Anchorage,Alaska in the United States.Results of the example demonstrate the feasibility and practicality of the proposed identification technique.The 2DOF soil model and the identification technique can be used for nonlinear response analysis of soil-structure interaction in the time-domain for layered or complex soil conditions.The identified parameters can be stored in a database tor use in other similar soil conditions,lfa universal database that covers information related to most soil conditions is developed in the thture,engineers could conveniently perform time history analyses of soil-structural interaction. 展开更多
关键词 soil-structure interaction IDENTIFICATION extended Kalman filter 2DOF model equivalent lumped parameters polynomial approximation seismic data
下载PDF
Fog Computing Architecture-Based Data Acquisition for WSN Applications 被引量:2
19
作者 Guangwei Zhang Ruifan Li 《China Communications》 SCIE CSCD 2017年第11期69-81,共13页
Efficient and effective data acquisition is of theoretical and practical importance in WSN applications because data measured and collected by WSN is often unreliable, such as those often accompanied by noise and erro... Efficient and effective data acquisition is of theoretical and practical importance in WSN applications because data measured and collected by WSN is often unreliable, such as those often accompanied by noise and error, missing values or inconsistent data. Motivated by fog computing, which focuses on how to effectively offload computation-intensive tasks from resource-constrained devices, this paper proposes a simple but yet effective data acquisition approach with the ability of filtering abnormal data and meeting the real-time requirement. Our method uses a cooperation mechanism by leveraging on both an architectural and algorithmic approach. Firstly, the sensor node with the limited computing resource only accomplishes detecting and marking the suspicious data using a light weight algorithm. Secondly, the cluster head evaluates suspicious data by referring to the data from the other sensor nodes in the same cluster and discard the abnormal data directly. Thirdly, the sink node fills up the discarded data with an approximate value using nearest neighbor data supplement method. Through the architecture, each node only consumes a few computational resources and distributes the heavily computing load to several nodes. Simulation results show that our data acquisition method is effective considering the real-time outlier filtering and the computing overhead. 展开更多
关键词 WSN fog computing abnormal data data filtering intrusion tolerance
下载PDF
PDM中基于cuckoo filter的数据完整性校验算法设计与实现 被引量:2
20
作者 丛丽晖 何国强 夏秀峰 《计算机应用与软件》 2017年第2期123-127,173,共6页
为满足PDM海量数据存储与高并发访问要求,构建基于企业私有云的PDM系统成为未来的必然选择。现有文件系统数据完整性校验算法多是基于RSA公钥密码技术,但这种技术突出问题是需要大量的模指数运算,其计算开销较大,尤其在大数据存储的条... 为满足PDM海量数据存储与高并发访问要求,构建基于企业私有云的PDM系统成为未来的必然选择。现有文件系统数据完整性校验算法多是基于RSA公钥密码技术,但这种技术突出问题是需要大量的模指数运算,其计算开销较大,尤其在大数据存储的条件下。针对PDM文件的大数据校验和数据动态性问题,提出基于cuckoo filter的数据完整性校验算法,以cuckoo filter作为校验标签存储结构,将基于哈希算法中的校验哈希值进行压缩,在满足PDM动态数据校验要求的前提下,实现轻量级的完整性校验。最后论证了该方案的安全性,并通过性能分析和实验验证了该方法是高效可行的。 展开更多
关键词 企业私有云 PDM 数据完整性 校验 CUCKOO filter
下载PDF
上一页 1 2 208 下一页 到第
使用帮助 返回顶部