There has been a significant advancement in the application of statistical tools in plant pathology during the past four decades. These tools include multivariate analysis of disease dynamics involving principal compo...There has been a significant advancement in the application of statistical tools in plant pathology during the past four decades. These tools include multivariate analysis of disease dynamics involving principal component analysis, cluster analysis, factor analysis, pattern analysis, discriminant analysis, multivariate analysis of variance, correspondence analysis, canonical correlation analysis, redundancy analysis, genetic diversity analysis, and stability analysis, which involve in joint regression, additive main effects and multiplicative interactions, and genotype-by-environment interaction biplot analysis. The advanced statistical tools, such as non-parametric analysis of disease association, meta-analysis, Bayesian analysis, and decision theory, take an important place in analysis of disease dynamics. Disease forecasting methods by simulation models for plant diseases have a great potentiality in practical disease control strategies. Common mathematical tools such as monomolecular, exponential, logistic, Gompertz and linked differential equations take an important place in growth curve analysis of disease epidemics. The highly informative means of displaying a range of numerical data through construction of box and whisker plots has been suggested. The probable applications of recent advanced tools of linear and non-linear mixed models like the linear mixed model, generalized linear model, and generalized linear mixed models have been presented. The most recent technologies such as micro-array analysis, though cost effective, provide estimates of gene expressions for thousands of genes simultaneously and need attention by the molecular biologists. Some of these advanced tools can be well applied in different branches of rice research, including crop improvement, crop production, crop protection, social sciences as well as agricultural engineering. The rice research scientists should take advantage of these new opportunities adequately in adoption of the new highly potential advanced technologies while planning experimental designs, data collection, analysis and interpretation of their research data sets.展开更多
In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolut...In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.展开更多
Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision...Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions.展开更多
This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and i...This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences.展开更多
This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combin...This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching.展开更多
Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategie...The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies.With the expansion of capacity for high-throughput scRNA-seq,including clinical samples,the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field.Here,we review the workflow for typical scRNA-seq data analysis,covering raw data processing and quality control,basic data analysis applicable for almost all scRNA-seq data sets,and advanced data analysis that should be tailored to specific scientific questions.While summarizing the current methods for each analysis step,we also provide an online repository of software and wrapped-up scripts to support the implementation.Recommendations and caveats are pointed out for some specific analysis tasks and approaches.We hope this resource will be helpful to researchers engaging with scRNA-seq,in particular for emerging clinical applications.展开更多
As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,ther...As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,there is frequently a hysteresis in the anticipated values relative to the real values.The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network(MDTCNet)for COVID-19 prediction to address this problem.In particular,it is possible to record the deep features and temporal dependencies in uncertain time series,and the features may then be combined using a feature fusion network and a multilayer perceptron.Last but not least,the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty,realizing the short-term and long-term prediction of COVID-19 daily confirmed cases,and verifying the effectiveness and accuracy of the suggested prediction method,as well as reducing the hysteresis of the prediction results.展开更多
Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through...Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through directional spectrum wave analysis. Recorded wind direction and wind speed were obtained through the related time series as well. For 12-month measurements(May 25 2007-2008), statistical calculations were done to specify the value of nonlinear auto-correlation of wave and wind using the probability distribution function of wave characteristics and statistical analysis in various time periods. The paper also presents and analyzes the amount of wave energy for the area mentioned on the basis of available database. Analyses showed a suitable comparison between the amounts of wave energy in different seasons. As a result, the best period for the largest amount of wave energy was known. Results showed that in the research period, the mean wave and wind auto correlation were about three hours. Among the probability distribution functions, i.e Weibull, Normal, Lognormal and Rayleigh, "Weibull" had the best consistency with experimental distribution function shown in different diagrams for each season. Results also showed that the mean wave energy in the research period was about 49.88 k W/m and the maximum density of wave energy was found in February and March, 2010.展开更多
Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities tu...Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well.展开更多
Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for rep...Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers.展开更多
This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Databa...This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Database from 2001 to 2022. Employing rigorous longitudinal statistical methods, the study examines the progress achieved over the past two decades. Notably, domestic researchers have displayed considerable interest in the study of Lu You’s English translation works since 2001. The research on the English translation of Lu You’s poetry reveals a diverse range of perspectives, indicating a rich body of scholarship. However, several challenges persist, including insufficient research, limited translation coverage, and a noticeable focus on specific poems such as “Phoenix Hairpin” in the realm of English translation research. Consequently, there is ample room for improvement in the quality of research output on the English translation of Lu You’s poems, as well as its recognition within the academic community. Building on these findings, it is argued that future investigations pertaining to the English translation of Lu You’s poetry should transcend the boundaries of textual analysis and encompass broader theoretical perspectives and research methodologies. By undertaking this shift, scholars will develop a more profound comprehension of Lu You’s poetic works and make substantive contributions to the field of translation studies. Thus, this article aims to bridge the gap between past research endeavors and future possibilities, serving as a guide and inspiration for scholars to embark on a more nuanced and enriching exploration of Lu You’s poetry as well as other Chinese literature classics.展开更多
The most common way to analyze economics data is to use statistics software and spreadsheets.The paper presents opportunities of modern Geographical Information System (GIS) for analysis of marketing, statistical, a...The most common way to analyze economics data is to use statistics software and spreadsheets.The paper presents opportunities of modern Geographical Information System (GIS) for analysis of marketing, statistical, and macroeconomic data. It considers existing tools and models and their applications in various sectors. The advantage is that the statistical data could be combined with geographic views, maps and also additional data derived from the GIS. As a result, a programming system is developed, using GIS for analysis of marketing, statistical, macroeconomic data, and risk assessment in real time and prevention. The system has been successfully implemented as web-based software application designed for use with a variety of hardware platforms (mobile devices, laptops, and desktop computers). The software is mainly written in the programming language Python, which offers a better structure and supports for the development of large applications. Optimization of the analysis, visualization of macroeconomic, and statistical data by region for different business research are achieved. The system is designed with Geographical Information System for settlements in their respective countries and regions. Information system integration with external software packages for statistical calculations and analysis is implemented in order to share data analyzing, processing, and forecasting. Technologies and processes for loading data from different sources and tools for data analysis are developed. The successfully developed system allows implementation of qualitative data analysis.展开更多
Biology is a challenging and complicated mess. Understanding this challenging complexity is the realm of the biological sciences: Trying to make sense of the massive, messy data in terms of discovering patterns and re...Biology is a challenging and complicated mess. Understanding this challenging complexity is the realm of the biological sciences: Trying to make sense of the massive, messy data in terms of discovering patterns and revealing its underlying general rules. Among the most powerful mathematical tools for organizing and helping to structure complex, heterogeneous and noisy data are the tools provided by multivariate statistical analysis (MSA) approaches. These eigenvector/eigenvalue data-compression approaches were first introduced to electron microscopy (EM) in 1980 to help sort out different views of macromolecules in a micrograph. After 35 years of continuous use and developments, new MSA applications are still being proposed regularly. The speed of computing has increased dramatically in the decades since their first use in electron microscopy. However, we have also seen a possibly even more rapid increase in the size and complexity of the EM data sets to be studied. MSA computations had thus become a very serious bottleneck limiting its general use. The parallelization of our programs—speeding up the process by orders of magnitude—has opened whole new avenues of research. The speed of the automatic classification in the compressed eigenvector space had also become a bottleneck which needed to be removed. In this paper we explain the basic principles of multivariate statistical eigenvector-eigenvalue data compression;we provide practical tips and application examples for those working in structural biology, and we provide the more experienced researcher in this and other fields with the formulas associated with these powerful MSA approaches.展开更多
This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it i...This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .展开更多
Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant...Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.展开更多
Traffic tunnels include tunnel works for traffic and transport in the areas of railway, highway, and rail transit. With many mountains and nearly one fifth of the global population, China possesses numerous large citi...Traffic tunnels include tunnel works for traffic and transport in the areas of railway, highway, and rail transit. With many mountains and nearly one fifth of the global population, China possesses numerous large cities and megapolises with rapidly growing economies and huge traffic demands. As a result, a great deal of railway, highway, and rail transit facilities are required in this country. In the past, the construction of these facilities mainly involved subgrade and bridge works; in recent years.展开更多
There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from ...There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.展开更多
The Okiep Copper District is the oldest mining district in South Africa with a legacy of more than 150 years of mining.This legacy can be felt in the presence of large tailings dams scattered throughout the area.These...The Okiep Copper District is the oldest mining district in South Africa with a legacy of more than 150 years of mining.This legacy can be felt in the presence of large tailings dams scattered throughout the area.These tailings have a deleterious impact on the surrounding environment.To use geochemical methods in determining the scale of the impact, pre-mining background levels need to be determined. This is especially difficult in areas for which展开更多
Geomechanical data are never sufficient in quantity or adequately precise and accurate for design purposes in mining and civil engineering.The objective of this paper is to show the variability of rock properties at t...Geomechanical data are never sufficient in quantity or adequately precise and accurate for design purposes in mining and civil engineering.The objective of this paper is to show the variability of rock properties at the sampled point in the roadway's roof,and then,how the statistical processing of the available geomechanical data can affect the results of numerical modelling of the roadway's stability.Four cases were applied in the numerical analysis,using average values(the most common in geomechanical data analysis),average minus standard deviation,median,and average value minus statistical error.The study show that different approach to the same geomechanical data set can change the modelling results considerably.The case shows that average minus standard deviation is the most conservative and least risky.It gives the displacements and yielded elements zone in four times broader range comparing to the average values scenario,which is the least conservative option.The two other cases need to be studied further.The results obtained from them are placed between most favorable and most adverse values.Taking the average values corrected by statistical error for the numerical analysis seems to be the best solution.Moreover,the confidence level can be adjusted depending on the object importance and the assumed risk level.展开更多
文摘There has been a significant advancement in the application of statistical tools in plant pathology during the past four decades. These tools include multivariate analysis of disease dynamics involving principal component analysis, cluster analysis, factor analysis, pattern analysis, discriminant analysis, multivariate analysis of variance, correspondence analysis, canonical correlation analysis, redundancy analysis, genetic diversity analysis, and stability analysis, which involve in joint regression, additive main effects and multiplicative interactions, and genotype-by-environment interaction biplot analysis. The advanced statistical tools, such as non-parametric analysis of disease association, meta-analysis, Bayesian analysis, and decision theory, take an important place in analysis of disease dynamics. Disease forecasting methods by simulation models for plant diseases have a great potentiality in practical disease control strategies. Common mathematical tools such as monomolecular, exponential, logistic, Gompertz and linked differential equations take an important place in growth curve analysis of disease epidemics. The highly informative means of displaying a range of numerical data through construction of box and whisker plots has been suggested. The probable applications of recent advanced tools of linear and non-linear mixed models like the linear mixed model, generalized linear model, and generalized linear mixed models have been presented. The most recent technologies such as micro-array analysis, though cost effective, provide estimates of gene expressions for thousands of genes simultaneously and need attention by the molecular biologists. Some of these advanced tools can be well applied in different branches of rice research, including crop improvement, crop production, crop protection, social sciences as well as agricultural engineering. The rice research scientists should take advantage of these new opportunities adequately in adoption of the new highly potential advanced technologies while planning experimental designs, data collection, analysis and interpretation of their research data sets.
基金financial support from PetroChina Innovation Foundation。
文摘In order to overcome the defects that the analysis of multi-well typical curves of shale gas reservoirs is rarely applied to engineering,this study proposes a robust production data analysis method based on deconvolution,which is used for multi-well inter-well interference research.In this study,a multi-well conceptual trilinear seepage model for multi-stage fractured horizontal wells was established,and its Laplace solutions under two different outer boundary conditions were obtained.Then,an improved pressure deconvolution algorithm was used to normalize the scattered production data.Furthermore,the typical curve fitting was carried out using the production data and the seepage model solution.Finally,some reservoir parameters and fracturing parameters were interpreted,and the intensity of inter-well interference was compared.The effectiveness of the method was verified by analyzing the production dynamic data of six shale gas wells in Duvernay area.The results showed that the fitting effect of typical curves was greatly improved due to the mutual restriction between deconvolution calculation parameter debugging and seepage model parameter debugging.Besides,by using the morphological characteristics of the log-log typical curves and the time corresponding to the intersection point of the log-log typical curves of two models under different outer boundary conditions,the strength of the interference between wells on the same well platform was well judged.This work can provide a reference for the optimization of well spacing and hydraulic fracturing measures for shale gas wells.
文摘Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions.
文摘This research paper compares Excel and R language for data analysis and concludes that R language is more suitable for complex data analysis tasks.R language’s open-source nature makes it accessible to everyone,and its powerful data management and analysis tools make it suitable for handling complex data analysis tasks.It is also highly customizable,allowing users to create custom functions and packages to meet their specific needs.Additionally,R language provides high reproducibility,making it easy to replicate and verify research results,and it has excellent collaboration capabilities,enabling multiple users to work on the same project simultaneously.These advantages make R language a more suitable choice for complex data analysis tasks,particularly in scientific research and business applications.The findings of this study will help people understand that R is not just a language that can handle more data than Excel and demonstrate that r is essential to the field of data analysis.At the same time,it will also help users and organizations make informed decisions regarding their data analysis needs and software preferences.
文摘This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching.
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
基金suppor ted by the National Key Research and Development Program of China (2022YFC2702502)the National Natural Science Foundation of China (32170742, 31970646, and 32060152)+7 种基金the Start Fund for Specially Appointed Professor of Jiangsu ProvinceHainan Province Science and Technology Special Fund (ZDYF2021SHFZ051)the Natural Science Foundation of Hainan Province (820MS053)the Start Fund for High-level Talents of Nanjing Medical University (NMUR2020009)the Marshal Initiative Funding of Hainan Medical University (JBGS202103)the Hainan Province Clinical Medical Center (QWYH202175)the Bioinformatics for Major Diseases Science Innovation Group of Hainan Medical Universitythe Shenzhen Science and Technology Program (JCYJ20210324140407021)
文摘The application of single-cell RNA sequencing(scRNA-seq)in biomedical research has advanced our understanding of the pathogenesis of disease and provided valuable insights into new diagnostic and therapeutic strategies.With the expansion of capacity for high-throughput scRNA-seq,including clinical samples,the analysis of these huge volumes of data has become a daunting prospect for researchers entering this field.Here,we review the workflow for typical scRNA-seq data analysis,covering raw data processing and quality control,basic data analysis applicable for almost all scRNA-seq data sets,and advanced data analysis that should be tailored to specific scientific questions.While summarizing the current methods for each analysis step,we also provide an online repository of software and wrapped-up scripts to support the implementation.Recommendations and caveats are pointed out for some specific analysis tasks and approaches.We hope this resource will be helpful to researchers engaging with scRNA-seq,in particular for emerging clinical applications.
基金supported by the major scientific and technological research project of Chongqing Education Commission(KJZD-M202000802)The first batch of Industrial and Informatization Key Special Fund Support Projects in Chongqing in 2022(2022000537).
文摘As COVID-19 poses a major threat to people’s health and economy,there is an urgent need for forecasting methodologies that can anticipate its trajectory efficiently.In non-stationary time series forecasting jobs,there is frequently a hysteresis in the anticipated values relative to the real values.The multilayer deep-time convolutional network and a feature fusion network are combined in this paper’s proposal of an enhanced Multilayer Deep Time Convolutional Neural Network(MDTCNet)for COVID-19 prediction to address this problem.In particular,it is possible to record the deep features and temporal dependencies in uncertain time series,and the features may then be combined using a feature fusion network and a multilayer perceptron.Last but not least,the experimental verification is conducted on the prediction task of COVID-19 real daily confirmed cases in the world and the United States with uncertainty,realizing the short-term and long-term prediction of COVID-19 daily confirmed cases,and verifying the effectiveness and accuracy of the suggested prediction method,as well as reducing the hysteresis of the prediction results.
文摘Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through directional spectrum wave analysis. Recorded wind direction and wind speed were obtained through the related time series as well. For 12-month measurements(May 25 2007-2008), statistical calculations were done to specify the value of nonlinear auto-correlation of wave and wind using the probability distribution function of wave characteristics and statistical analysis in various time periods. The paper also presents and analyzes the amount of wave energy for the area mentioned on the basis of available database. Analyses showed a suitable comparison between the amounts of wave energy in different seasons. As a result, the best period for the largest amount of wave energy was known. Results showed that in the research period, the mean wave and wind auto correlation were about three hours. Among the probability distribution functions, i.e Weibull, Normal, Lognormal and Rayleigh, "Weibull" had the best consistency with experimental distribution function shown in different diagrams for each season. Results also showed that the mean wave energy in the research period was about 49.88 k W/m and the maximum density of wave energy was found in February and March, 2010.
文摘Human living would be impossible without air quality. Consistent advancements in practically every aspect of contemporary human life have harmed air quality. Everyday industrial, transportation, and home activities turn up dangerous contaminants in our surroundings. This study investigated two years’ worth of air quality and outlier detection data from two Indian cities. Studies on air pollution have used numerous types of methodologies, with various gases being seen as a vector whose components include gas concentration values for each observation per-formed. We use curves to represent the monthly average of daily gas emissions in our technique. The approach, which is based on functional depth, was used to find outliers in the city of Delhi and Kolkata’s gas emissions, and the outcomes were compared to those from the traditional method. In the evaluation and comparison of these models’ performances, the functional approach model studied well.
文摘Air quality is a critical concern for public health and environmental regulation. The Air Quality Index (AQI), a widely adopted index by the US Environmental Protection Agency (EPA), serves as a crucial metric for reporting site-specific air pollution levels. Accurately predicting air quality, as measured by the AQI, is essential for effective air pollution management. In this study, we aim to identify the most reliable regression model among linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression, and K-nearest neighbors (KNN). We conducted four different regression analyses using a machine learning approach to determine the model with the best performance. By employing the confusion matrix and error percentages, we selected the best-performing model, which yielded prediction error rates of 22%, 23%, 20%, and 27%, respectively, for LDA, QDA, logistic regression, and KNN models. The logistic regression model outperformed the other three statistical models in predicting AQI. Understanding these models' performance can help address an existing gap in air quality research and contribute to the integration of regression techniques in AQI studies, ultimately benefiting stakeholders like environmental regulators, healthcare professionals, urban planners, and researchers.
文摘This article presents a comprehensive analysis of the current state of research on the English translation of Lu You’s poetry, utilizing a data sample comprising research papers published in the CNKI Full-text Database from 2001 to 2022. Employing rigorous longitudinal statistical methods, the study examines the progress achieved over the past two decades. Notably, domestic researchers have displayed considerable interest in the study of Lu You’s English translation works since 2001. The research on the English translation of Lu You’s poetry reveals a diverse range of perspectives, indicating a rich body of scholarship. However, several challenges persist, including insufficient research, limited translation coverage, and a noticeable focus on specific poems such as “Phoenix Hairpin” in the realm of English translation research. Consequently, there is ample room for improvement in the quality of research output on the English translation of Lu You’s poems, as well as its recognition within the academic community. Building on these findings, it is argued that future investigations pertaining to the English translation of Lu You’s poetry should transcend the boundaries of textual analysis and encompass broader theoretical perspectives and research methodologies. By undertaking this shift, scholars will develop a more profound comprehension of Lu You’s poetic works and make substantive contributions to the field of translation studies. Thus, this article aims to bridge the gap between past research endeavors and future possibilities, serving as a guide and inspiration for scholars to embark on a more nuanced and enriching exploration of Lu You’s poetry as well as other Chinese literature classics.
文摘The most common way to analyze economics data is to use statistics software and spreadsheets.The paper presents opportunities of modern Geographical Information System (GIS) for analysis of marketing, statistical, and macroeconomic data. It considers existing tools and models and their applications in various sectors. The advantage is that the statistical data could be combined with geographic views, maps and also additional data derived from the GIS. As a result, a programming system is developed, using GIS for analysis of marketing, statistical, macroeconomic data, and risk assessment in real time and prevention. The system has been successfully implemented as web-based software application designed for use with a variety of hardware platforms (mobile devices, laptops, and desktop computers). The software is mainly written in the programming language Python, which offers a better structure and supports for the development of large applications. Optimization of the analysis, visualization of macroeconomic, and statistical data by region for different business research are achieved. The system is designed with Geographical Information System for settlements in their respective countries and regions. Information system integration with external software packages for statistical calculations and analysis is implemented in order to share data analyzing, processing, and forecasting. Technologies and processes for loading data from different sources and tools for data analysis are developed. The successfully developed system allows implementation of qualitative data analysis.
文摘Biology is a challenging and complicated mess. Understanding this challenging complexity is the realm of the biological sciences: Trying to make sense of the massive, messy data in terms of discovering patterns and revealing its underlying general rules. Among the most powerful mathematical tools for organizing and helping to structure complex, heterogeneous and noisy data are the tools provided by multivariate statistical analysis (MSA) approaches. These eigenvector/eigenvalue data-compression approaches were first introduced to electron microscopy (EM) in 1980 to help sort out different views of macromolecules in a micrograph. After 35 years of continuous use and developments, new MSA applications are still being proposed regularly. The speed of computing has increased dramatically in the decades since their first use in electron microscopy. However, we have also seen a possibly even more rapid increase in the size and complexity of the EM data sets to be studied. MSA computations had thus become a very serious bottleneck limiting its general use. The parallelization of our programs—speeding up the process by orders of magnitude—has opened whole new avenues of research. The speed of the automatic classification in the compressed eigenvector space had also become a bottleneck which needed to be removed. In this paper we explain the basic principles of multivariate statistical eigenvector-eigenvalue data compression;we provide practical tips and application examples for those working in structural biology, and we provide the more experienced researcher in this and other fields with the formulas associated with these powerful MSA approaches.
文摘This paper establishes the phase space in the light of spacial series data , discusses the fractal structure of geological data in terms of correlated functions and studies the chaos of these data . In addition , it introduces the R/S analysis for time series analysis into spacial series to calculate the structural fractal dimensions of ranges and standard deviation for spacial series data -and to establish the fractal dimension matrix and the procedures in plotting the fractal dimension anomaly diagram with vector distances of fractal dimension . At last , it has examples of its application .
文摘Phase-matching quantum key distribution is a promising scheme for remote quantum key distribution,breaking through the traditional linear key-rate bound.In practical applications,finite data size can cause significant system performance to deteriorate when data size is below 1010.In this work,an improved statistical fluctuation analysis method is applied for the first time to two decoy-states phase-matching quantum key distribution,offering a new insight and potential solutions for improving the key generation rate and the maximum transmission distance while maintaining security.Moreover,we also compare the influence of the proposed improved statistical fluctuation analysis method on system performance with those of the Gaussian approximation and Chernoff-Hoeffding boundary methods on system performance.The simulation results show that the proposed scheme significantly improves the key generation rate and maximum transmission distance in comparison with the Chernoff-Hoeffding approach,and approach the results obtained when the Gaussian approximation is employed.At the same time,the proposed scheme retains the same security level as the Chernoff-Hoeffding method,and is even more secure than the Gaussian approximation.
文摘Traffic tunnels include tunnel works for traffic and transport in the areas of railway, highway, and rail transit. With many mountains and nearly one fifth of the global population, China possesses numerous large cities and megapolises with rapidly growing economies and huge traffic demands. As a result, a great deal of railway, highway, and rail transit facilities are required in this country. In the past, the construction of these facilities mainly involved subgrade and bridge works; in recent years.
文摘There are some limitations when we apply conventional methods to analyze the massive amounts of seismic data acquired with high-density spatial sampling since processors usually obtain the properties of raw data from common shot gathers or other datasets located at certain points or along lines. We propose a novel method in this paper to observe seismic data on time slices from spatial subsets. The composition of a spatial subset and the unique character of orthogonal or oblique subsets are described and pre-stack subsets are shown by 3D visualization. In seismic data processing, spatial subsets can be used for the following aspects: (1) to check the trace distribution uniformity and regularity; (2) to observe the main features of ground-roll and linear noise; (3) to find abnormal traces from slices of datasets; and (4) to QC the results of pre-stack noise attenuation. The field data application shows that seismic data analysis in spatial subsets is an effective method that may lead to a better discrimination among various wavefields and help us obtain more information.
文摘The Okiep Copper District is the oldest mining district in South Africa with a legacy of more than 150 years of mining.This legacy can be felt in the presence of large tailings dams scattered throughout the area.These tailings have a deleterious impact on the surrounding environment.To use geochemical methods in determining the scale of the impact, pre-mining background levels need to be determined. This is especially difficult in areas for which
文摘Geomechanical data are never sufficient in quantity or adequately precise and accurate for design purposes in mining and civil engineering.The objective of this paper is to show the variability of rock properties at the sampled point in the roadway's roof,and then,how the statistical processing of the available geomechanical data can affect the results of numerical modelling of the roadway's stability.Four cases were applied in the numerical analysis,using average values(the most common in geomechanical data analysis),average minus standard deviation,median,and average value minus statistical error.The study show that different approach to the same geomechanical data set can change the modelling results considerably.The case shows that average minus standard deviation is the most conservative and least risky.It gives the displacements and yielded elements zone in four times broader range comparing to the average values scenario,which is the least conservative option.The two other cases need to be studied further.The results obtained from them are placed between most favorable and most adverse values.Taking the average values corrected by statistical error for the numerical analysis seems to be the best solution.Moreover,the confidence level can be adjusted depending on the object importance and the assumed risk level.