期刊文献+
共找到91篇文章
< 1 2 5 >
每页显示 20 50 100
AMAD:Adaptive Mapping Approach for Datacenter Networks,an Energy-Friend Resource Allocation Framework via Repeated Leader Follower Game
1
作者 Ahmad Nahar Quttoum Muteb Alshammari 《Computers, Materials & Continua》 SCIE EI 2024年第9期4577-4601,共25页
Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict th... Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs. 展开更多
关键词 data center networks energy-aware resource management resource utilization game-theory mechanisms
下载PDF
Dynamic Routing of Multiple QoS-Required Flows in Cloud-Edge Autonomous Multi-Domain Data Center Networks
2
作者 Shiyan Zhang Ruohan Xu +3 位作者 Zhangbo Xu Cenhua Yu Yuyang Jiang Yuting Zhao 《Computers, Materials & Continua》 SCIE EI 2024年第2期2287-2308,共22页
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an... The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms. 展开更多
关键词 MULTI-DOMAIN data center networks AUTONOMOUS ROUTING
下载PDF
An Efficient Priority-Driven Congestion Control Algorithm for Data Center Networks 被引量:3
3
作者 Jiahua Zhu Xianliang Jiang +4 位作者 Yan Yu Guang Jin Haiming Chen Xiaohui Li Long Qu 《China Communications》 SCIE CSCD 2020年第6期37-50,共14页
With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.Howeve... With the emerging diverse applications in data centers,the demands on quality of service in data centers also become diverse,such as high throughput of elephant flows and low latency of deadline-sensitive flows.However,traditional TCPs are ill-suited to such situations and always result in the inefficiency(e.g.missing the flow deadline,inevitable throughput collapse)of data transfers.This further degrades the user-perceived quality of service(QoS)in data centers.To reduce the flow completion time of mice and deadline-sensitive flows along with promoting the throughput of elephant flows,an efficient and deadline-aware priority-driven congestion control(PCC)protocol,which grants mice and deadline-sensitive flows the highest priority,is proposed in this paper.Specifically,PCC computes the priority of different flows according to the size of transmitted data,the remaining data volume,and the flows’deadline.Then PCC adjusts the congestion window according to the flow priority and the degree of network congestion.Furthermore,switches in data centers control the input/output of packets based on the flow priority and the queue length.Different from existing TCPs,to speed up the data transfers of mice and deadline-sensitive flows,PCC provides an effective method to compute and encode the flow priority explicitly.According to the flow priority,switches can manage packets efficiently and ensure the data transfers of high priority flows through a weighted priority scheduling with minor modification.The experimental results prove that PCC can improve the data transfer performance of mice and deadline-sensitive flows while guaranting the throughput of elephant flows. 展开更多
关键词 data center network low-latency PRIORITY switch scheduling transmission control protocol
下载PDF
Data Center Network Architecture 被引量:2
4
作者 Yantao Sun Jing Cheng +1 位作者 Konggui Shi Qiang Liu 《ZTE Communications》 2013年第1期54-61,共8页
1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe... 1 Introduction The history of data centers can be traced back to the 1960s. Early data centers were deployed on main- frames that were time-shared by users via remote terminals. The boom in data centers came duringthe internet era. Many companies started building large inter- net-connected facililies, 展开更多
关键词 data center network network architecture network topology virtual machine migration
下载PDF
Research on the Trusted Energy-Saving Transmission of Data Center Network
5
作者 Yubo Wang Bei Gong Mowei Gong 《China Communications》 SCIE CSCD 2016年第12期139-149,共11页
According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing me... According to the high operating costs and a large number of energy waste in the current data center network architectures, we propose a kind of trusted flow preemption scheduling combining the energy-saving routing mechanism based on typical data center network architecture. The mechanism can make the network flow in its exclusive network link bandwidth and transmission path, which can improve the link utilization and the use of the network energy efficiency. Meanwhile, we apply trusted computing to guarantee the high security, high performance and high fault-tolerant routing forwarding service, which helps improving the average completion time of network flow. 展开更多
关键词 data center network architecture energy-saving routing mechanism trusted computing network energy consumption flow average completion time
下载PDF
Fast and scalable routing protocols for data center networks
6
作者 Mihailo Vesovic Aleksandra Smiljanic Dusan Kostic 《Digital Communications and Networks》 SCIE CSCD 2023年第6期1340-1350,共11页
Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with s... Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies. 展开更多
关键词 Routing protocols data center networks Parallel algorithms Distributed algorithms Algorithm design and analysis Shortest-path problem SCALABILITY
下载PDF
Modeling TCP Incast Issue in Data Center Networks and an Adaptive Application-Layer Solution
7
作者 Jin-Tang Luo Jie Xu Jian Sun 《Journal of Electronic Science and Technology》 CAS CSCD 2018年第1期84-91,共8页
In data centers, the transmission control protocol(TCP) incast causes catastrophic goodput degradation to applications with a many-to-one traffic pattern. In this paper, we intend to tame incast at the receiver-side a... In data centers, the transmission control protocol(TCP) incast causes catastrophic goodput degradation to applications with a many-to-one traffic pattern. In this paper, we intend to tame incast at the receiver-side application. Towards this goal, we first develop an analytical model that formulates the incast probability as a function of connection variables and network environment settings. We combine the model with the optimization theory and derive some insights into minimizing the incast probability through tuning connection variables related to applications. Then,enlightened by the analytical results, we propose an adaptive application-layer solution to the TCP incast.The solution equally allocates advertised windows to concurrent connections, and dynamically adapts the number of concurrent connections to the varying conditions. Simulation results show that our solution consistently eludes incast and achieves high goodput in various scenarios including the ones with multiple bottleneck links and background TCP traffic. 展开更多
关键词 Application-layer solution data center networks MODELING transmission control protocol(TCP) incast
下载PDF
Exploring High-Performance Architecture for Data Center Networks
8
作者 Deshun Li Shaorong Sun +5 位作者 Qisen Wu Shuhua Weng Yuyin Tan Jiangyuan Yao Xiangdang Huang Xingcan Cao 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期433-443,共11页
As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processin... As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks. 展开更多
关键词 data center networks dual-port server clos structure highperformance
下载PDF
SOPA:Source Routing Based Packet-Level Multi-Path Routing in Data Center Networks
9
作者 LI Dan LIN Du +1 位作者 JIANG Changlin Wang Lingqiang 《ZTE Communications》 2018年第2期42-54,共13页
Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize t... Many "rich - connected" topologies with multiple parallel paths between smwers have been proposed for data center networks recently to provide high bisection bandwidth, but it re mains challenging to fully utilize the high network capacity by appropriate multi- path routing algorithms. As flow-level path splitting may lead to trafl'ic imbalance between paths due to flow- size difference, packet-level path splitting attracts more attention lately, which spreads packets from flows into multiple available paths and significantly improves link utilizations. However, it may cause packet reordering, confusing the TCP congestion control algorithm and lowering the throughput of flows. In this paper, we design a novel packetlevel multi-path routing scheme called SOPA, which leverag- es OpenFlow to perform packet-level path splitting in a round- robin fashion, and hence significantly mitigates the packet reordering problem and improves the network throughput. Moreover, SOPA leverages the topological feature of data center networks to encode a very small number of switches along the path into the packet header, resulting in very light overhead. Compared with random packet spraying (RPS), Hedera and equal-cost multi-path routing (ECMP), our simulations demonstrate that SOPA achieves 29.87%, 50.41% and 77.74% higher network throughput respectively under permutation workload, and reduces average data transfer completion time by 53.65%, 343.31% and 348.25% respectively under production workload. 展开更多
关键词 data center networks multi-path routing path splitting
下载PDF
Load Balancing Fat-Tree on Long-Lived Flows:Avoiding Congestion in a Data Center Network
10
作者 Wen Gao Xuyan Li +1 位作者 Boyang Zhou Chunming Wu 《ZTE Communications》 2014年第2期57-62,共6页
In a data center network (DCN), load balancing is required when servers transfer data on the same path. This is necessary to avoid congestion. Load balancing is challenged by the dynamic transferral of demands and c... In a data center network (DCN), load balancing is required when servers transfer data on the same path. This is necessary to avoid congestion. Load balancing is challenged by the dynamic transferral of demands and complex routing control. Because of the distributed nature of a traditional network, previous research on load balancing has mostly focused on improving the performance of the local network; thus, the load has not been optimally balanced across the entire network. In this paper, we propose a novel dynamic load-balancing algorithm for fat-tree. This algorithm avoids congestions to the great possible extent by searching for non-conflicting paths in a centralized way. We implement the algorithm in the popular software-defined networking architecture and evaluate the algorithm' s performance on the Mininet platform. The results show that our algorithm has higher bisection band- width than the traditional equal-cost multi-path load-balancing algorithm and thus more effectively avoids congestion. 展开更多
关键词 data center network software-defined networking load balancing network management
下载PDF
PRECESION: progressive recovery and restoration planning of interdependent services in enterprise data centers 被引量:2
11
作者 Ibrahim El-Shekeil Amitangshu Pal Krishna Kant 《Digital Communications and Networks》 SCIE 2018年第1期39-47,共9页
The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterpri... The primary focus of this paper is to design a progressive restoration plan for an enterprise data center environment following a partial or full disruption. Repairing and restoring disrupted components in an enterprise data center requires a significant amount of time and human effort. Following a major disruption, the recovery process involves multiple stages, and during each stage, the partially recovered infrastructures can provide limited services to users at some degraded service level. However, how fast and efficiently an enterprise infrastructure can be recovered de- pends on how the recovery mechanism restores the disrupted components, considering the inter-dependencies between services, along with the limitations of expert human operators. The entire problem turns out to be NP- hard and rather complex, and we devise an efficient meta-heuristic to solve the problem. By considering some real-world examples, we show that the proposed meta-heuristic provides very accurate results, and still runs 600-2800 times faster than the optimal solution obtained from a general purpose mathematical solver [1]. 展开更多
关键词 Progressive restoration planning Enterprise data center Genetic algorithm Integer linear program Multi-layer networks
下载PDF
Data Center Traffic Scheduling Strategy for Minimization Congestion and Quality of Service Guaranteeing
12
作者 Chunzhi Wang Weidong Cao +1 位作者 Yalin Hu Jinhang Liu 《Computers, Materials & Continua》 SCIE EI 2023年第5期4377-4393,共17页
According to Cisco’s Internet Report 2020 white paper,there will be 29.3 billion connected devices worldwide by 2023,up from 18.4 billion in 2018.5G connections will generate nearly three times more traffic than 4G c... According to Cisco’s Internet Report 2020 white paper,there will be 29.3 billion connected devices worldwide by 2023,up from 18.4 billion in 2018.5G connections will generate nearly three times more traffic than 4G connections.While bringing a boom to the network,it also presents unprecedented challenges in terms of flow forwarding decisions.The path assignment mechanism used in traditional traffic schedulingmethods tends to cause local network congestion caused by the concentration of elephant flows,resulting in unbalanced network load and degraded quality of service.Using the centralized control of software-defined networks,this study proposes a data center traffic scheduling strategy for minimization congestion and quality of service guaranteeing(MCQG).The ideal transmission path is selected for data flows while considering the network congestion rate and quality of service.Different traffic scheduling strategies are used according to the characteristics of different service types in data centers.Reroute scheduling for elephant flows that tend to cause local congestion.The path evaluation function is formed by the maximum link utilization on the path,the number of elephant flows and the time delay,and the fast merit-seeking capability of the sparrow search algorithm is used to find the path with the lowest actual link overhead as the rerouting path for the elephant flows.It is used to reduce the possibility of local network congestion occurrence.Equal cost multi-path(ECMP)protocols with faster response time are used to schedulemouse flows with shorter duration.Used to guarantee the quality of service of the network.To achieve isolated transmission of various types of data streams.The experimental results show that the proposed strategy has higher throughput,better network load balancing,and better robustness compared to ECMP under different traffic models.In addition,because it can fully utilize the resources in the network,MCQG also outperforms another traffic scheduling strategy that does rerouting for elephant flows(namely Hedera).Compared withECMPandHedera,MCQGimproves average throughput by 11.73%and 4.29%,and normalized total throughput by 6.74%and 2.64%,respectively;MCQG improves link utilization by 23.25%and 15.07%;in addition,the average round-trip delay and packet loss rate fluctuate significantly less than the two compared strategies. 展开更多
关键词 Software-defined network data center network OpenFlow network congestion quality of service
下载PDF
Enhancing Reliability via Checkpointing in Cloud Computing Systems 被引量:4
13
作者 Ao Zhou Qibo Sun Jinglin Li 《China Communications》 SCIE CSCD 2017年第7期108-117,共10页
Cloud computing is becoming an important solution for providing scalable computing resources via Internet. Because there are tens of thousands of nodes in data center, the probability of server failures is nontrivial.... Cloud computing is becoming an important solution for providing scalable computing resources via Internet. Because there are tens of thousands of nodes in data center, the probability of server failures is nontrivial. Therefore, it is a critical challenge to guarantee the service reliability. Fault-tolerance strategies, such as checkpoint, are commonly employed. Because of the failure of the edge switches, the checkpoint image may become inaccessible. Therefore, current checkpoint-based fault tolerance method cannot achieve the best effect. In this paper, we propose an optimal checkpoint method with edge switch failure-aware. The edge switch failure-aware checkpoint method includes two algorithms. The first algorithm employs the data center topology and communication characteristic for checkpoint image storage server selection. The second algorithm employs the checkpoint image storage characteristic as well as the data center topology to select the recovery server. Simulation experiments are performed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 cloud computing cloud service RELIABILITY fault tolerance data center network
下载PDF
Performance Evaluation of Topologies for Multi-Domain Software-Defined Networking
14
作者 Jiangyuan Yao Weiping Yang +5 位作者 Shuhua Weng Minrui Wang Zheng Jiang Deshun Li Yahui Li Xingcan Cao 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期741-755,共15页
Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,t... Software-defined networking(SDN)is widely used in multiple types of data center networks,and these distributed data center networks can be integrated into a multi-domain SDN by utilizing multiple controllers.However,the network topology of each control domain of SDN will affect the performance of the multidomain network,so performance evaluation is required before the deployment of the multi-domain SDN.Besides,there is a high cost to build real multi-domain SDN networks with different topologies,so it is necessary to use simulation testing methods to evaluate the topological performance of the multi-domain SDN network.As there is a lack of existing methods to construct a multi-domain SDN simulation network for the tool to evaluate the topological performance automatically,this paper proposes an automated multi-domain SDN topology performance evaluation framework,which supports multiple types of SDN network topologies in cooperating to construct a multi-domain SDN network.The framework integrates existing single-domain SDN simulation tools with network performance testing tools to realize automated performance evaluation of multidomain SDN network topologies.We designed and implemented a Mininet-based simulation tool that can connect multiple controllers and run user-specified topologies in multiple SDN control domains to build and test multi-domain SDN networks faster.Then,we used the tool to perform performance tests on various data center network topologies in single-domain and multi-domain SDN simulation environments.Test results show that Space Shuffle has the most stable performance in a single-domain environment,and Fat-tree has the best performance in a multi-domain environment.Also,this tool has the characteristics of simplicity and stability,which can meet the needs of multi-domain SDN topology performance evaluation. 展开更多
关键词 Software-defined networking emulation network multi-domain SDN data center network topology
下载PDF
BCDC: A High-Performance, Server-Centric Data Center Network 被引量:5
15
作者 Xi Wang Jian-Xi Fan +2 位作者 Cheng-Kuan Lin Jing-Ya Zhou Zhao Liu 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第2期400-416,共17页
The capability of the data center network largely decides the performance of cloud computing. However, the number of servers in the data center network becomes increasingly huge, because of the continuous growth of th... The capability of the data center network largely decides the performance of cloud computing. However, the number of servers in the data center network becomes increasingly huge, because of the continuous growth of the application requirements. The performance improvement of cloud computing faces great challenges of how to connect a large number of servers in building a data center network with promising performance. Traditional tree-based data center networks have issues of bandwidth bottleneck, failure of single switch, etc. Recently proposed data center networks such as DCell, FiConn, and BCube, have larger bandwidth and better fault-tolerance with respect to traditional tree-based data center networks. Nonetheless, for DCell and FiConn, the fault-tolerant length of path between servers increases in case of failure of switches; BCube requires higher performance in switches when its scale is enlarged. Based on the above considerations, we propose a new server-centric data center network, called BCDC, based on crossed cube with excellent performance. Then, we study the connectivity of BCDC networks. Furthermore, we propose communication algorithms and fault-tolerant routing algorithm of BCDC networks. Moreover, we analyze the performance and time complexities of the proposed algorithms in BCDC networks. Our research will provide the basis for design and implementation of a new family of data center networks. 展开更多
关键词 data center network interconnection network crossed cube server-centric FAULT-TOLERANT
原文传递
Collaborative Network Security in Multi-Tenant Data Center for Cloud Computing 被引量:5
16
作者 Zhen Chen Wenyu Dong +3 位作者 Hang Li Peng Zhang Xinming Chen Junwei Cao 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第1期82-94,共13页
A data center is an infrastructure that supports Internet service. Cloud comput the face of the Internet service infrastructure, enabling even small organizations to quickly ng is rapidly changing build Web and mobile... A data center is an infrastructure that supports Internet service. Cloud comput the face of the Internet service infrastructure, enabling even small organizations to quickly ng is rapidly changing build Web and mobile applications for millions of users by taking advantage of the scale and flexibility of shared physical infrastructures provided by cloud computing. In this scenario, multiple tenants save their data and applications in shared data centers, blurring the network boundaries between each tenant in the cloud. In addition, different tenants have different security requirements, while different security policies are necessary for different tenants. Network virtualization is used to meet a diverse set of tenant-specific requirements with the underlying physical network enabling multi-tenant datacenters to automatically address a large and diverse set of tenants requirements. In this paper, we propose the system implementation of vCNSMS, a collaborative network security prototype system used n a multi-tenant data center. We demonstrate vCNSMS with a centralized collaborative scheme and deep packet nspection with an open source UTM system. A security level based protection policy is proposed for simplifying the security rule management for vCNSMS. Different security levels have different packet inspection schemes and are enforced with different security plugins. A smart packet verdict scheme is also integrated into vCNSMS for ntelligence flow processing to protect from possible network attacks inside a data center network 展开更多
关键词 data center network network security software defined network collaborative network security multi- tenant network virtualization intelligent flow processing cloud computing
原文传递
Rethinking the architecture design of data center networks 被引量:6
17
作者 Kaishun WU Jiang XIAO Lionel M. NI 《Frontiers of Computer Science》 SCIE EI CSCD 2012年第5期596-603,共8页
In the rising tide of the Internet of things, more and more things in the world are connected to the Internet. Recently, data have kept growing at a rate more than four times of that expected in Moore's law. This exp... In the rising tide of the Internet of things, more and more things in the world are connected to the Internet. Recently, data have kept growing at a rate more than four times of that expected in Moore's law. This explosion of data comes from various sources such as mobile phones, video cameras and sensor networks, which often present multidi- mensional characteristics. The huge amount of data brings many challenges on the management, transportation, and pro- cessing IT infrastructures. To address these challenges, the state-of-art large scale data center networks have begun to provide cloud services that are increasingly prevalent. How- ever, how to build a good data center remains an open chal- lenge. Concurrently, the architecture design, which signifi- cantly affects the total performance, is of great research inter- est. This paper surveys advances in data center network de- sign. In this paper we first introduce the upcoming trends in the data center industry. Then we review some popular design principles for today's data center network architectures. In the third part, we present some up-to-date data center frame- works and make a comprehensive comparison of them. Dur- ing the comparison, we observe that there is no so-called op- timal data center and the design should be different referring to the data placement, replication, processing, and query pro- cessing. After that, several existing challenges and limitations are discussed. According to these observations, we point out some possible future research directions. 展开更多
关键词 data center networks switch-based networks direct networks hybrid networks
原文传递
Virtual machine placement optimizing to improve network performance in cloud data centers 被引量:3
18
作者 DONG Jian-kang WANG Hong-bo +1 位作者 LI Yang-yang CHENG Shi-duan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2014年第3期62-70,共9页
With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP... With the wide application of virtualization technology in cloud data centers, how to effectively place virtual machine (VM) is becoming a major issue for cloud providers. The existing virtual machine placement (VMP) solutions are mainly to optimize server resources. However, they pay little consideration on network resources optimization, and they do not concern the impact of the network topology and the current network traffic. A multi-resource constraints VMP scheme is proposed. Firstly, the authors attempt to reduce the total communication traffic in the data center network, which is abstracted as a quadratic assignment problem; and then aim at optimizing network maximum link utilization (MLU). On the condition of slight variation of the total traffic, minimizing MLU can balance network traffic distribution and reduce network congestion hotspots, a classic combinatorial optimization problem as well as NP-hard problem. Ant colony optimization and 2-opt local search are combined to solve the problem. Simulation shows that MLU is decreased by 20%, and the number of hot links is decreased by 37%. 展开更多
关键词 cloud computing data center network virtual machine placement traffic engineering network performance
原文传递
On Peer-Assisted Data Dissemination in Data Center Networks: Analysis and Implementation 被引量:2
19
作者 Yaxiong Zhao Jie Wu Cong Liu 《Tsinghua Science and Technology》 SCIE EI CAS 2014年第1期51-64,共14页
Data Center Networks (DCNs) are the fundamental infrastructure for cloud computing. Driven by the massive parallel computing tasks in cloud computing, one-to-many data dissemination becomes one of the most important... Data Center Networks (DCNs) are the fundamental infrastructure for cloud computing. Driven by the massive parallel computing tasks in cloud computing, one-to-many data dissemination becomes one of the most important traffic patterns in DCNs. Many architectures and protocols are proposed to meet this demand. However, these proposals either require complicated configurations on switches and servers, or cannot deliver an optimal performance. In this paper, we propose the peer-assisted data dissemination for DCNs. This approach utilizes the rich physical connections with high bandwidths and mutli-path connections, to facilitate efficient one-to-many data dissemination. We prove that an optimal P2P data dissemination schedule exists for FatTree, a specially- designed DCN architecture. We then present a theoretical analysis of this algorithm in the general multi-rooted tree topology, a widely-used DCN architecture. Additionally, we explore the performance of an intuitive line structure for data dissemination. Our analysis and experimental results prove that this simple structure is able to produce a comparable performance to the optimal algorithm. Since DCN applications heavily rely on virtualization to achieve optimal resource sharing, we present a general implementation method for the proposed algorithms, which aims to mitigate the impact of the potentially-high churn rate of the virtual machines. 展开更多
关键词 data center networks cloud computing P2P SCHEDULING peer-assisted data dissemination
原文传递
Power savings in software defined data center networks via modified hybrid genetic algorithm 被引量:2
20
作者 Xie Kun Huang Xiaohong +1 位作者 Ma Maode Zhang Pei 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2017年第4期76-86,共11页
In modern data centers, power consumed by network is an observable portion of the total energy budget and thus improving the energy efficiency of data center networks (DCNs) truly matters. One effective way for this... In modern data centers, power consumed by network is an observable portion of the total energy budget and thus improving the energy efficiency of data center networks (DCNs) truly matters. One effective way for this energy efficiency is to make the size of DCNs elastic along with traffic demands by flow consolidation and bandwidth scheduling, i.e., turning off unnecessary network components to reduce the power consumption. Meanwhile, having the instinct support for data center management, software defined networking (SDN) provides a paradigm to elastically control the resources of DCNs. To achieve such power savings, most of the prior efforts just adopt simple greedy heuristic to reduce computational complexity. However, due to the inherent problem of greedy algorithm, a good-enough optimization cannot be always guaranteed. To address this problem, a modified hybrid genetic algorithm (MHGA) is employed to improve the solution's accuracy, and the fine-grained routing function of SDN is fully leveraged. The simulation results show that more efficient power management can be achieved than the previous studies, by increasing about 5% of network energy savings. 展开更多
关键词 data center networks energy efficiency soltware defined networking elastic topology genetic algorithm
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部