This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve suffi...With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.展开更多
The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°...The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.展开更多
Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for position...Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.展开更多
This paper addresses a computationally compact and statistically optimal joint Maximum a Posteriori(MAP)algorithm for channel estimation and data detection in the presence of Phase Noise(PHN)in iterative Orthogonal Fr...This paper addresses a computationally compact and statistically optimal joint Maximum a Posteriori(MAP)algorithm for channel estimation and data detection in the presence of Phase Noise(PHN)in iterative Orthogonal Frequency Division Multiplexing(OFDM)receivers used for high speed and high spectral efficient wireless communication systems.The MAP cost function for joint estimation and detection is derived and optimized further with the proposed cyclic gradient descent optimization algorithm.The proposed joint estimation and detection algorithm relaxes the restriction of small PHN assumptions and utilizes the prior statistical knowledge of PHN spectral components to produce a statistically optimal solution.The frequency-domain estimation of Channel Transfer Function(CTF)in frequency selective fading makes the method simpler,compared with the estimation of Channel Impulse Response(CIR)in the time domain.Two different time-varying PHN models,produced by Free Running Oscillator(FRO)and Phase-Locked Loop(PLL)oscillator,are presented and compared for performance difference with proposed OFDM receiver.Simulation results for joint MAP channel estimation are compared with Cramer-Rao Lower Bound(CRLB),and the simulation results for joint MAP data detection are compared with“NO PHN"performance to demonstrate that the proposed joint MAP estimation and detection algorithm achieve near-optimum performance even under multipath channel fading.展开更多
A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE...A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.展开更多
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d...Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism.展开更多
ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the ...ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the performances of these methods in detecting oceanic features for both noise free and noise contaminated AVHRR (Advanced Very High Resolution Radiometer) IR image with Kuroshio. Also, practical experiments in detecting the eddy of Kuroshio with these methods are carried out for comparison. Results show that the ICSED algorithm has more advantages than other methods in detecting mesoscale features of ocean. Finally, the effectiveness of window size of ICSED method to oceanic features detection is quantitatively discussed.展开更多
Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior chara...Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion detection.The challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,etc.lead to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection technique.The data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as selection.Initially,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack classes.Based on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the types.Thereafter,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced dataset.The selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter method.Finally,the selected features are trained and tested for detecting attacks using BNM-tGAN.The Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the attack with low computation time.The work avoids false alarm rate of attacks and remains to be relatively robust against malicious attacks as compared to existing methods.展开更多
Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to acces...Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.展开更多
In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is respons...In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.展开更多
Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the availa...Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the available datasets contain insufficient examples for training classifiers;the common cure is to seek large amounts of training samples from unlabeled data,but such data sets often contain many mislabeled samples,which will degrade the performance of classifiers.Therefore,this study proposes a novel error data detection approach suitable for reducing noise in unlabeled biomedical event data.First,we construct the mislabeled dataset through error data analysis with the development dataset.The sample pairs’vector representations are then obtained by the means of sequence patterns and the joint model of convolutional neural network and long short-term memory recurrent neural network.Following this,the sample identification strategy is proposed,using error detection based on pair representation for unlabeled data.With the latter,the selected samples are added to enrich the training dataset and improve the classification performance.In the BioNLP Shared Task GENIA,the experiments results indicate that the proposed approach is competent in extract the biomedical event from biomedical literature.Our approach can effectively filter some noisy examples and build a satisfactory prediction model.展开更多
Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, ...Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, phase-transition onsets, energies, and pressures are algebraically obtained for germanium, zinc-oxide and gallium-nitride. There are low pressure phase-transitions that correspond to, or are not resolved by hydrostatic anvil onset pressures. This enables the attribution of polymorph structures, by comparing with known structures from pulsed laser deposition or molecular beam epitaxy and twinning. The spherical indentation is the easiest way for the synthesis and further characterization of polymorphs, now available in pure form under diamond calotte and in contact with their corresponding less dense polymorph. The unprecedented results and new possibilities require loading curves from experimental data. These are now easily distinguished from data that are “fitted” to make them concur with widely used unphysical Johnson’s formula for spheres (“<span style="white-space:nowrap;"><em>P</em> = (4/3)<em>h</em><sup>3/2</sup><em>R</em><sup>1/2</sup><em>E</em><sup><span style="white-space:nowrap;">∗</span></sup></span>”) not taking care of the <em>R/h</em> variation. Its challenge is indispensable, because its use involves “fitting equations” for making the data concur. These faked reports (no “experimental” data) provide dangerous false moduli and theories. The fitted spherical indentation reports with radii ranging from 4 to 250 μm are identified for PDMS, GaAs, Al, Si, SiC, MgO, and Steel. The detailed analysis reveals characteristic features.展开更多
State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure...State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.展开更多
A non-Cyclic Prefixed Multiple-Input Multiple-Output Single-Carrier Frequency-Domain Equalization (non-CP MIMO-SCFDE) system based on a recursive algorithm of Joint Channel Es- timation and Data Detection (recursive-J...A non-Cyclic Prefixed Multiple-Input Multiple-Output Single-Carrier Frequency-Domain Equalization (non-CP MIMO-SCFDE) system based on a recursive algorithm of Joint Channel Es- timation and Data Detection (recursive-JCEDD) is proposed in this paper. Unlike the traditional CP MIMO-SCFDE system, the transmitted block of the proposed system is designed in the way that block-type pilot sequences and Single-Carrier (SC) information sequences have been arranged alter- nately without any cyclic prefix before each SC information sequence. Moreover, a recursive-JCEDD algorithm based on interference cancellation is proposed for the corresponding receivers. Simulation results show that the Bit Error Rate (BER) of the proposed system based on the recursive-JCEDD algorithm is lower than traditional CP MIMO-SCFDE or MIMO-OFDM with channel estimation for more than 0.5 dB.展开更多
Symbiotic radio(SR)is an emerging green technology for the Internet of Things(IoT).One key challenge of the SR systems is to design efficient and low-complexity detectors,which is the focus of this paper.We first driv...Symbiotic radio(SR)is an emerging green technology for the Internet of Things(IoT).One key challenge of the SR systems is to design efficient and low-complexity detectors,which is the focus of this paper.We first drive the mathematical expression of the optimal maximum-likelihood(ML)detector,and then propose a suboptimal iterative detector with low complexity.Finally,we show through numerical results that our proposed detector can obtain near-optimal bit error rate(BER)performance at a low computational cost.展开更多
With the continuous use of cloud and distributed computing, the threats associated with data and information technology (IT) in such an environment have also increased. Thus, data security and data leakage prevention ...With the continuous use of cloud and distributed computing, the threats associated with data and information technology (IT) in such an environment have also increased. Thus, data security and data leakage prevention have become important in a distributed environment. In this aspect, mobile agent-based systems are one of the latest mechanisms to identify and prevent the intrusion and leakage of the data across the network. Thus, to tackle one or more of the several challenges on Mobile Agent-Based Information Leakage Prevention, this paper aim at providing a comprehensive, detailed, and systematic study of the Distribution Model for Mobile Agent-Based Information Leakage Prevention. This paper involves the review of papers selected from the journals which are published in 2009 and 2019. The critical review is presented for the distributed mobile agent-based intrusion detection systems in terms of their design analysis, techniques, and shortcomings. Initially, eighty-five papers were identified, but a paper selection process reduced the number of papers to thirteen important reviews.展开更多
Estimating intercity vehicle emissions precisely would benefit collaborative control in multiple cities.Considering the variability of emissions caused by vehicles,roads,and traffic,the 24-hour change characteristics ...Estimating intercity vehicle emissions precisely would benefit collaborative control in multiple cities.Considering the variability of emissions caused by vehicles,roads,and traffic,the 24-hour change characteristics of air pollutants(CO,HC,NO_(X),PM_(2.5))on the intercity road network of Guangdong Province by vehicle categories and road links were revealed based on vehicle identity detection data in real-life traffic for each hour in July 2018.The results showed that the spatial diversity of emissions caused by the unbalanced economywas obvious.The vehicle emissions in the Pearl River Delta region(PRD)with a higher economic level were approximately 1–2 times those in the non-Pearl RiverDelta region(non-PRD).Provincial roads with high loads became potential sources of high emissions.Therefore,emission control policies must emphasize the PRD and key roads by travel guidance to achieve greater reduction.Gasoline passenger cars with a large proportion of traffic dominated morning and evening peaks in the 24-hour period and were the dominant contributors to CO and HC emissions,contributing more than 50%in the daytime(7:00–23:00)and higher than 26%at night(0:00–6:00).Diesel trucks made up 10%of traffic,but were the dominant player at night,contributed 50%–90%to NO_(X) and PM_(2.5) emissions,with amarked 24-hour change rule of more than 80%at night(23:00–5:00)and less than 60%during daytime.Therefore,targeted control measures by time-section should be set up on collaborative control.These findings provide time-varying decision support for variable vehicle emission control on a large scale.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
Phasor measurement units(PMUs) can provide real-time measurement data to construct the ubiquitous electric of the Internet of Things. However, due to complex factors on site, PMU data can be easily compromised by inte...Phasor measurement units(PMUs) can provide real-time measurement data to construct the ubiquitous electric of the Internet of Things. However, due to complex factors on site, PMU data can be easily compromised by interference or synchronization jitter. It will lead to various levels of PMU data quality issues, which can directly affect the PMU-based application and even threaten the safety of power systems. In order to improve the PMU data quality, a data-driven PMU bad data detection algorithm based on spectral clustering using single PMU data is proposed in this paper. The proposed algorithm does not require the system topology and parameters. Firstly, a data identification method based on a decision tree is proposed to distinguish event data and bad data by using the slope feature of each data. Then, a bad data detection method based on spectral clustering is developed. By analyzing the weighted relationships among all the data, this method can detect the bad data with a small deviation. Simulations and results of field recording data test illustrate that this data-driven method can achieve bad data identification and detection effectively. This technique can improve PMU data quality to guarantee its applications in the power systems.展开更多
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
文摘With the popularisation of intelligent power,power devices have different shapes,numbers and specifications.This means that the power data has distributional variability,the model learning process cannot achieve sufficient extraction of data features,which seriously affects the accuracy and performance of anomaly detection.Therefore,this paper proposes a deep learning-based anomaly detection model for power data,which integrates a data alignment enhancement technique based on random sampling and an adaptive feature fusion method leveraging dimension reduction.Aiming at the distribution variability of power data,this paper developed a sliding window-based data adjustment method for this model,which solves the problem of high-dimensional feature noise and low-dimensional missing data.To address the problem of insufficient feature fusion,an adaptive feature fusion method based on feature dimension reduction and dictionary learning is proposed to improve the anomaly data detection accuracy of the model.In order to verify the effectiveness of the proposed method,we conducted effectiveness comparisons through elimination experiments.The experimental results show that compared with the traditional anomaly detection methods,the method proposed in this paper not only has an advantage in model accuracy,but also reduces the amount of parameter calculation of the model in the process of feature matching and improves the detection speed.
文摘The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.
基金supported by the National Key R&D Program of China(No.2018AAA0100804)the Talent Project of Revitalization Liaoning(No.XLYC1907022)+5 种基金the Key R&D Projects of Liaoning Province(No.2020JH2/10100045)the Capacity Building of Civil Aviation Safety(No.TMSA1614)the Natural Science Foundation of Liaoning Province(No.2019-MS-251)the Scientific Research Project of Liaoning Provincial Department of Education(Nos.L201705,L201716)the High-Level Innovation Talent Project of Shenyang(No.RC190030)the Second Young and Middle-Aged Talents Support Program of Shenyang Aerospace University.
文摘Due to the influence of terrain structure,meteorological conditions and various factors,there are anomalous data in automatic dependent surveillance-broadcast(ADS-B)message.The ADS-B equipment can be used for positioning of general aviation aircraft.Aim to acquire the accurate position information of aircraft and detect anomaly data,the ADS-B anomaly data detection model based on deep learning and difference of Gaussian(DoG)approach is proposed.First,according to the characteristic of ADS-B data,the ADS-B position data are transformed into the coordinate system.And the origin of the coordinate system is set up as the take-off point.Then,based on the kinematic principle,the ADS-B anomaly data can be removed.Moreover,the details of the ADS-B position data can be got by the DoG approach.Finally,the long short-term memory(LSTM)neural network is used to optimize the recurrent neural network(RNN)with severe gradient reduction for processing ADS-B data.The position data of ADS-B are reconstructed by the sequence to sequence(seq2seq)model which is composed of LSTM neural network,and the reconstruction error is used to detect the anomalous data.Based on the real flight data of general aviation aircraft,the simulation results show that the anomaly data can be detected effectively by the proposed method of reconstructing ADS-B data with the seq2seq model,and its running time is reduced.Compared with the RNN,the accuracy of anomaly detection is increased by 2.7%.The performance of the proposed model is better than that of the traditional anomaly detection models.
文摘This paper addresses a computationally compact and statistically optimal joint Maximum a Posteriori(MAP)algorithm for channel estimation and data detection in the presence of Phase Noise(PHN)in iterative Orthogonal Frequency Division Multiplexing(OFDM)receivers used for high speed and high spectral efficient wireless communication systems.The MAP cost function for joint estimation and detection is derived and optimized further with the proposed cyclic gradient descent optimization algorithm.The proposed joint estimation and detection algorithm relaxes the restriction of small PHN assumptions and utilizes the prior statistical knowledge of PHN spectral components to produce a statistically optimal solution.The frequency-domain estimation of Channel Transfer Function(CTF)in frequency selective fading makes the method simpler,compared with the estimation of Channel Impulse Response(CIR)in the time domain.Two different time-varying PHN models,produced by Free Running Oscillator(FRO)and Phase-Locked Loop(PLL)oscillator,are presented and compared for performance difference with proposed OFDM receiver.Simulation results for joint MAP channel estimation are compared with Cramer-Rao Lower Bound(CRLB),and the simulation results for joint MAP data detection are compared with“NO PHN"performance to demonstrate that the proposed joint MAP estimation and detection algorithm achieve near-optimum performance even under multipath channel fading.
基金Supported by the National Natural Science Foundation of China (No. 61001105), the National Science and Technology Major Projects (No. 2011ZX03001- 007- 03) and Beijing Natural Science Foundation (No. 4102043).
文摘A new channel estimation and data detection joint algorithm is proposed for multi-input multi-output (MIMO) - orthogonal frequency division multiplexing (OFDM) system using linear minimum mean square error (LMMSE)- based space-alternating generalized expectation-maximization (SAGE) algorithm. In the proposed algorithm, every sub-frame of the MIMO-OFDM system is divided into some OFDM sub-blocks and the LMMSE-based SAGE algorithm in each sub-block is used. At the head of each sub-flame, we insert training symbols which are used in the initial estimation at the beginning. Channel estimation of the previous sub-block is applied to the initial estimation in the current sub-block by the maximum-likelihood (ML) detection to update channel estimatjon and data detection by iteration until converge. Then all the sub-blocks can be finished in turn. Simulation results show that the proposed algorithm can improve the bit error rate (BER) performance.
文摘Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism.
文摘ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the performances of these methods in detecting oceanic features for both noise free and noise contaminated AVHRR (Advanced Very High Resolution Radiometer) IR image with Kuroshio. Also, practical experiments in detecting the eddy of Kuroshio with these methods are carried out for comparison. Results show that the ICSED algorithm has more advantages than other methods in detecting mesoscale features of ocean. Finally, the effectiveness of window size of ICSED method to oceanic features detection is quantitatively discussed.
文摘Intrusion detection is critical to guaranteeing the safety of the data in the network.Even though,since Internet commerce has grown at a breakneck pace,network traffic kinds are rising daily,and network behavior characteristics are becoming increasingly complicated,posing significant hurdles to intrusion detection.The challenges in terms of false positives,false negatives,low detection accuracy,high running time,adversarial attacks,uncertain attacks,etc.lead to insecure Intrusion Detection System(IDS).To offset the existing challenge,the work has developed a secure Data Mining Intrusion detection system(DataMIDS)framework using Functional Perturbation(FP)feature selection and Bengio Nesterov Momentum-based Tuned Generative Adversarial Network(BNM-tGAN)attack detection technique.The data mining-based framework provides shallow learning of features and emphasizes feature engineering as well as selection.Initially,the IDS data are analyzed for missing values based on the Marginal Likelihood Fisher Information Matrix technique(MLFIMT)that identifies the relationship among the missing values and attack classes.Based on the analysis,the missing values are classified as Missing Completely at Random(MCAR),Missing at random(MAR),Missing Not at Random(MNAR),and handled according to the types.Thereafter,categorical features are handled followed by feature scaling using Absolute Median Division based Robust Scalar(AMDRS)and the Handling of the imbalanced dataset.The selection of relevant features is initiated using FP that uses‘3’Feature Selection(FS)techniques i.e.,Inverse Chi Square based Flamingo Search(ICS-FSO)wrapper method,Hyperparameter Tuned Threshold based Decision Tree(HpTT-DT)embedded method,and Xavier Normal Distribution based Relief(XavND-Relief)filter method.Finally,the selected features are trained and tested for detecting attacks using BNM-tGAN.The Experimental analysis demonstrates that the introduced DataMIDS framework produces an accurate diagnosis about the attack with low computation time.The work avoids false alarm rate of attacks and remains to be relatively robust against malicious attacks as compared to existing methods.
文摘Cloud computing(CC)is an advanced technology that provides access to predictive resources and data sharing.The cloud environment represents the right type regarding cloud usage model ownership,size,and rights to access.It introduces the scope and nature of cloud computing.In recent times,all processes are fed into the system for which consumer data and cache size are required.One of the most security issues in the cloud environment is Distributed Denial of Ser-vice(DDoS)attacks,responsible for cloud server overloading.This proposed sys-tem ID3(Iterative Dichotomiser 3)Maximum Multifactor Dimensionality Posteriori Method(ID3-MMDP)is used to overcome the drawback and a rela-tively simple way to execute and for the detection of(DDoS)attack.First,the pro-posed ID3-MMDP method calls for the resources of the cloud platform and then implements the attack detection technology based on information entropy to detect DDoS attacks.Since because the entropy value can show the discrete or aggregated characteristics of the current data set,it can be used for the detection of abnormal dataflow,User-uploaded data,ID3-MMDP system checks and read risk measurement and processing,bug ratingfile size changes,orfile name changes and changes in the format design of the data size entropy value.Unique properties can be used whenever the program approaches any data error to detect abnormal data services.Finally,the experiment also verifies the DDoS attack detection capability algorithm.
基金National Natural Science Foundation of China(No.61302159,61227003,61301259)Natural Science Foundation of Shanxi Province(No.2012021011-2)The Project Sponsored by Scientific Research for the Returned Overseas Chinese Scholars,Shanxi Province(No.2013-083)
文摘In order to detect and process underground vibration signal, this paper presents a system with the combination of software and hardware. The hardware part consists of sensor, memory chips, USB, etc. , which is responsible for capturing original signals from sensors. The software part is a virtual oscilloscope based on LabWindows/CVI (C vitual instrument), which not only has the functions of traditional oscilloscope but also can analyze and process vibration signals in special ways. The experimental results show that the designed system is stable, reliable and easy to be operated, which can meet practical requirements.
基金This work was supported by the National Natural Science Foundation of China(No.61672301)Jilin Provincial Science&Technology Development(20180101054JC)+1 种基金Science and Technology Innovation Guide Project of Inner Mongolia Autonomous Region of China(2017)Talent Development Fund of Jilin Province(2018).
文摘Supervised machine learning approaches are effective in text mining,but their success relies heavily on manually annotated corpora.However,there are limited numbers of annotated biomedical event corpora,and the available datasets contain insufficient examples for training classifiers;the common cure is to seek large amounts of training samples from unlabeled data,but such data sets often contain many mislabeled samples,which will degrade the performance of classifiers.Therefore,this study proposes a novel error data detection approach suitable for reducing noise in unlabeled biomedical event data.First,we construct the mislabeled dataset through error data analysis with the development dataset.The sample pairs’vector representations are then obtained by the means of sequence patterns and the joint model of convolutional neural network and long short-term memory recurrent neural network.Following this,the sample identification strategy is proposed,using error detection based on pair representation for unlabeled data.With the latter,the selected samples are added to enrich the training dataset and improve the classification performance.In the BioNLP Shared Task GENIA,the experiments results indicate that the proposed approach is competent in extract the biomedical event from biomedical literature.Our approach can effectively filter some noisy examples and build a satisfactory prediction model.
文摘Spherical indentations that rely on original date are analyzed with the physically correct mathematical formula and its integration that take into account the radius over depth changes upon penetration. Linear plots, phase-transition onsets, energies, and pressures are algebraically obtained for germanium, zinc-oxide and gallium-nitride. There are low pressure phase-transitions that correspond to, or are not resolved by hydrostatic anvil onset pressures. This enables the attribution of polymorph structures, by comparing with known structures from pulsed laser deposition or molecular beam epitaxy and twinning. The spherical indentation is the easiest way for the synthesis and further characterization of polymorphs, now available in pure form under diamond calotte and in contact with their corresponding less dense polymorph. The unprecedented results and new possibilities require loading curves from experimental data. These are now easily distinguished from data that are “fitted” to make them concur with widely used unphysical Johnson’s formula for spheres (“<span style="white-space:nowrap;"><em>P</em> = (4/3)<em>h</em><sup>3/2</sup><em>R</em><sup>1/2</sup><em>E</em><sup><span style="white-space:nowrap;">∗</span></sup></span>”) not taking care of the <em>R/h</em> variation. Its challenge is indispensable, because its use involves “fitting equations” for making the data concur. These faked reports (no “experimental” data) provide dangerous false moduli and theories. The fitted spherical indentation reports with radii ranging from 4 to 250 μm are identified for PDMS, GaAs, Al, Si, SiC, MgO, and Steel. The detailed analysis reveals characteristic features.
基金supported in part by the Key-Area Research and Development Program of Guangdong Province under Grant 2020B010166004in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2020A1515111100+1 种基金in part by the National Natural Science Foundation of China under Grant 52207106in part by the Open Fund of State Key Laboratory of Operation and Control of Renewable Energy&Storage Systems(China Electric Power Research Institute)under Grant KJ80-21-001.
文摘State estimation plays a vital role in the stable operation of modern power systems,but it is vulnerable to cyber attacks.False data injection attacks(FDIA),one of the most common cyber attacks,can tamper with measure-ment data and bypass the bad data detection(BDD)mechanism,leading to incorrect results of power system state estimation(PSSE).This paper presents a detection framework of FDIA for PSSE based on graph edge-conditioned convolutional networks(GECCN),which use topology information,node features and edge features.Through deep graph architecture,the correlation of sample data is effectively mined to establish the mapping relationship between the estimated values of measurements and the actual states of power systems.In addition,the edge-conditioned convolution operation allows processing data sets with different graph structures.Case studies are undertaken on the IEEE 14-bus system under different attack intensities and degrees to evaluate the performance of GECCN.Simulation results show that GECCN has better detection performance than convolutional neural networks,deep neural net-works and support vector machine.Moreover,the satisfactory detection performance obtained with the data sets of the IEEE 14-bus,30-bus and 118-bus systems verifies the effective scalability of GECCN.
基金Supported by the National Natural Science Foundation of China (No. 60874060)
文摘A non-Cyclic Prefixed Multiple-Input Multiple-Output Single-Carrier Frequency-Domain Equalization (non-CP MIMO-SCFDE) system based on a recursive algorithm of Joint Channel Es- timation and Data Detection (recursive-JCEDD) is proposed in this paper. Unlike the traditional CP MIMO-SCFDE system, the transmitted block of the proposed system is designed in the way that block-type pilot sequences and Single-Carrier (SC) information sequences have been arranged alter- nately without any cyclic prefix before each SC information sequence. Moreover, a recursive-JCEDD algorithm based on interference cancellation is proposed for the corresponding receivers. Simulation results show that the Bit Error Rate (BER) of the proposed system based on the recursive-JCEDD algorithm is lower than traditional CP MIMO-SCFDE or MIMO-OFDM with channel estimation for more than 0.5 dB.
文摘Symbiotic radio(SR)is an emerging green technology for the Internet of Things(IoT).One key challenge of the SR systems is to design efficient and low-complexity detectors,which is the focus of this paper.We first drive the mathematical expression of the optimal maximum-likelihood(ML)detector,and then propose a suboptimal iterative detector with low complexity.Finally,we show through numerical results that our proposed detector can obtain near-optimal bit error rate(BER)performance at a low computational cost.
文摘With the continuous use of cloud and distributed computing, the threats associated with data and information technology (IT) in such an environment have also increased. Thus, data security and data leakage prevention have become important in a distributed environment. In this aspect, mobile agent-based systems are one of the latest mechanisms to identify and prevent the intrusion and leakage of the data across the network. Thus, to tackle one or more of the several challenges on Mobile Agent-Based Information Leakage Prevention, this paper aim at providing a comprehensive, detailed, and systematic study of the Distribution Model for Mobile Agent-Based Information Leakage Prevention. This paper involves the review of papers selected from the journals which are published in 2009 and 2019. The critical review is presented for the distributed mobile agent-based intrusion detection systems in terms of their design analysis, techniques, and shortcomings. Initially, eighty-five papers were identified, but a paper selection process reduced the number of papers to thirteen important reviews.
基金supported by the Natural Science Foundation of China(No.U1811463,41975165)the National Key Research Program of China(No.2018YFB1601100)+1 种基金the Science Foundation Project of Guangdong(No.2019A1515010812)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(No.NY221125).
文摘Estimating intercity vehicle emissions precisely would benefit collaborative control in multiple cities.Considering the variability of emissions caused by vehicles,roads,and traffic,the 24-hour change characteristics of air pollutants(CO,HC,NO_(X),PM_(2.5))on the intercity road network of Guangdong Province by vehicle categories and road links were revealed based on vehicle identity detection data in real-life traffic for each hour in July 2018.The results showed that the spatial diversity of emissions caused by the unbalanced economywas obvious.The vehicle emissions in the Pearl River Delta region(PRD)with a higher economic level were approximately 1–2 times those in the non-Pearl RiverDelta region(non-PRD).Provincial roads with high loads became potential sources of high emissions.Therefore,emission control policies must emphasize the PRD and key roads by travel guidance to achieve greater reduction.Gasoline passenger cars with a large proportion of traffic dominated morning and evening peaks in the 24-hour period and were the dominant contributors to CO and HC emissions,contributing more than 50%in the daytime(7:00–23:00)and higher than 26%at night(0:00–6:00).Diesel trucks made up 10%of traffic,but were the dominant player at night,contributed 50%–90%to NO_(X) and PM_(2.5) emissions,with amarked 24-hour change rule of more than 80%at night(23:00–5:00)and less than 60%during daytime.Therefore,targeted control measures by time-section should be set up on collaborative control.These findings provide time-varying decision support for variable vehicle emission control on a large scale.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金supported by the National Key R&D Program (No.2017YFB0902901)the National Natural Science Foundation of China (No.51627811,No.51725702,and No.51707064)。
文摘Phasor measurement units(PMUs) can provide real-time measurement data to construct the ubiquitous electric of the Internet of Things. However, due to complex factors on site, PMU data can be easily compromised by interference or synchronization jitter. It will lead to various levels of PMU data quality issues, which can directly affect the PMU-based application and even threaten the safety of power systems. In order to improve the PMU data quality, a data-driven PMU bad data detection algorithm based on spectral clustering using single PMU data is proposed in this paper. The proposed algorithm does not require the system topology and parameters. Firstly, a data identification method based on a decision tree is proposed to distinguish event data and bad data by using the slope feature of each data. Then, a bad data detection method based on spectral clustering is developed. By analyzing the weighted relationships among all the data, this method can detect the bad data with a small deviation. Simulations and results of field recording data test illustrate that this data-driven method can achieve bad data identification and detection effectively. This technique can improve PMU data quality to guarantee its applications in the power systems.