The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data...The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.展开更多
In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in whic...In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.展开更多
This work focuses on radial basis functions containing no parameters with themain objective being to comparatively explore more of their effectiveness.For this,a total of sixteen forms of shapeless radial basis functi...This work focuses on radial basis functions containing no parameters with themain objective being to comparatively explore more of their effectiveness.For this,a total of sixteen forms of shapeless radial basis functions are gathered and investigated under the context of the pattern recognition problem through the structure of radial basis function neural networks,with the use of the Representational Capability(RC)algorithm.Different sizes of datasets are disturbed with noise before being imported into the algorithm as‘training/testing’datasets.Each shapeless radial basis function is monitored carefully with effectiveness criteria including accuracy,condition number(of the interpolation matrix),CPU time,CPU-storage requirement,underfitting and overfitting aspects,and the number of centres being generated.For the sake of comparison,the well-known Multiquadric-radial basis function is included as a representative of shape-contained radial basis functions.The numerical results have revealed that some forms of shapeless radial basis functions show good potential and are even better than Multiquadric itself indicating strongly that the future use of radial basis function may no longer face the pain of choosing a proper shape when shapeless forms may be equally(or even better)effective.展开更多
The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius ...The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.展开更多
In this paper, we conduct research on the modern precision e-commerce marketing model under the big data and pattern recognition background. Large amount of consumption data provides the electricity enterprises grasp ...In this paper, we conduct research on the modern precision e-commerce marketing model under the big data and pattern recognition background. Large amount of consumption data provides the electricity enterprises grasp the user consumption pattern and the basis of the electric business enterprise through the use of big data can be personalized, accurate and intelligent advertising push service, service mode for the creation of more interesting and effective. Under this basis, electricity companies can also pass the assurance of pair of big data, looking for better increase user stickiness, development of new products and services, the ways and methods to reduce operational costs and accordingly, we propose the novel perspectives on the corresponding issues for the systematic level enhancement that provides the novel methodology of precision e-commerce marketing.展开更多
Based on the regularity nature of lower-limb motion,an intent pattern recognition approach for above-knee prosthesis is proposed in this paper. To remedy the defects of recognizer based on electromyogram(EMG), we deve...Based on the regularity nature of lower-limb motion,an intent pattern recognition approach for above-knee prosthesis is proposed in this paper. To remedy the defects of recognizer based on electromyogram(EMG), we develop a pure mechanical sensor architecture for intent pattern recognition of lower-limb motion. The sensor system is composed of an accelerometer, a gyroscope mounted on the prosthetic socket, and two pressure sensors mounted under the sole. To compensate the delay in the control of prosthesis, the signals in the stance phase are used to predict the terrain and speed in the swing phase. Specifically, the intent pattern recognizer utilizes intraclass correlation coefficient(ICC) according to the Cartesian product of walking speed and terrain. Moreover, the sensor data are fused via DempsterShafer's theory. And hidden Markov model(HMM) is used to recognize the realtime motion state with the reference of the prior step. The proposed method can infer the prosthesis user's intent of walking on different terrain, which includes level ground,stair ascent, stair descent, up and down ramp. The experiments demonstrate that the intent pattern recognizer is capable of identifying five typical terrain-modes with the rate of 95.8%. The outcome of this investigation is expected to substantially improve the control performance of powered above-knee prosthesis.展开更多
The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal ch...The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set).展开更多
Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we propose a novel method called distributed compressed sensing for image using block measurements data fusion....Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we propose a novel method called distributed compressed sensing for image using block measurements data fusion. Firstly, original image is divided into small blocks and each block is sampled independently using the same measurement operator, to obtain the smaller encoded sparser coefficients and stored measurements matrix and its vectors.? Secondly, original image is reconstructed using the block measurements fusion and recovery transform. Finally, several numerical experiments demonstrate that our method has a much lower data storage and calculation cost as well as high quality of reconstruction when compared with other existing schemes. We believe it is of great practical potentials in the network communication as well as pattern recognition domain.展开更多
In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occu...In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.展开更多
Smart grids are increasingly dependent on data with the rapid development of communication and measurement.As one of the important data sources of smart grids,phasor measurement unit(PMU)is facing the high risk from a...Smart grids are increasingly dependent on data with the rapid development of communication and measurement.As one of the important data sources of smart grids,phasor measurement unit(PMU)is facing the high risk from attacks.Compared with cyber attacks,global position system(GPS)spoofing attacks(GSAs)are easier to implement because they can be exploited by portable devices,without the need to access the physical system.Therefore,this paper proposes a novel method for pattern recognition of GSA and an additional function of the proposed method is the data correction to the phase angle difference(PAD)deviation.Specifically,this paper analyzes the effect of GSA on PMU measurement and gives two common patterns of GSA,i.e.,the step attack and the ramp attack.Then,the method of estimating the PAD deviation across a transmission line introduced by GSA is proposed,which does not require the line parameters.After obtaining the estimated PAD deviations,the pattern of GSA can be recognized by hypothesis tests and correlation coefficients according to the statistical characteristics of the estimated PAD deviations.Finally,with the case studies,the effectiveness of the proposed method is demonstrated,and the success rate of the pattern recognition and the online performance of the proposed method are analyzed.展开更多
The non-monotonic problem exited in information fusion systems is solved. Through the introducing of non-monotonic reasoning method, which was realized with ATMS, into the information fusion system, it gains the abili...The non-monotonic problem exited in information fusion systems is solved. Through the introducing of non-monotonic reasoning method, which was realized with ATMS, into the information fusion system, it gains the ability to process insufficient information with flexibility and non-monotonic behavior. In the simulation test of our system, our system manifests its ability of dealing the insufficient and contradictory information, which partly solves the decision dilemma brought out by the insufficient information in battle situations. The information fusion target recognition system can process the information in battle situation fast and with flexibility.展开更多
The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectivene...The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.展开更多
Combining both visible and infrared object information, multispectral data is a promising source data for automatic maritime ship recognition. In this paper, in order to take advantage of deep convolutional neural net...Combining both visible and infrared object information, multispectral data is a promising source data for automatic maritime ship recognition. In this paper, in order to take advantage of deep convolutional neural network and multispectral data, we model multispectral ship recognition task into a convolutional feature fusion problem, and propose a feature fusion architecture called Hybrid Fusion. We fine-tune the VGG-16 model pre-trained on ImageNet through three channels single spectral image and four channels multispectral images, and use existing regularization techniques to avoid over-fitting problem. Hybrid Fusion as well as the other three feature fusion architectures is investigated. Each fusion architecture consists of visible image and infrared image feature extraction branches, in which the pre-trained and fine-tuned VGG-16 models are taken as feature extractor. In each fusion architecture, image features of two branches are firstly extracted from the same layer or different layers of VGG-16 model. Subsequently, the features extracted from the two branches are flattened and concatenated to produce a multispectral feature vector, which is finally fed into a classifier to achieve ship recognition task. Furthermore, based on these fusion architectures, we also evaluate recognition performance of a feature vector normalization method and three combinations of feature extractors. Experimental results on the visible and infrared ship (VAIS) dataset show that the best Hybrid Fusion achieves 89.6% mean per-class recognition accuracy on daytime paired images and 64.9% on nighttime infrared images, and outperforms the state-of-the-art method by 1.4% and 3.9%, respectively.展开更多
A volcano can be defined as a complex system, not least for the hidden clues related to its internal nature. Innovative models grounded in the Artificial Sciences, have been proposed for a novel pattern recognition an...A volcano can be defined as a complex system, not least for the hidden clues related to its internal nature. Innovative models grounded in the Artificial Sciences, have been proposed for a novel pattern recognition analysis at Mt. Etna volcano. The reference monitoring dataset dealt with real data of 28 parameters collected between January 2001 and April 2005, during which the volcano underwent the July-August 2001, October 2002-January 2003 and September 2004-April 2005 flank eruptions. There were 301 eruptive days out of an overall number of 1581 investigated days. The analysis involved successive steps. First, the TWIST algorithm was used to select the most predictive attributes associated with the flank eruption target. During his work, the algorithm TWIST selected 11 characteristics of the input vector: among them SO<sub>2</sub> and CO<sub>2</sub> emissions, and also many other attributes whose linear correlation with the target was very low. A 5 × 2 Cross Validation protocol estimated the sensitivity and specificity of pattern recognition algorithms. Finally, different classification algorithms have been compared to understand if this pattern recognition task may have suitable results and which algorithm performs best. Best results (higher than 97% accuracy) have been obtained after performing advanced Artificial Neural Networks, with a sensitivity and specificity estimates over 97% and 98%, respectively. The present analysis highlights that a suitable monitoring dataset inferred hidden information about volcanic phenomena, whose highly non-linear processes are enhanced.展开更多
How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable i...How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable insights by utilizing the power of cutting-edge algorithms and machine learning, empowering enterprises to make deft decisions quickly and efficiently. This article explores the idea of cognitive computing and AI in decision-making, emphasizing its function in converting unvalued data into valuable knowledge. It details the advantages of utilizing these technologies, such as greater productivity, accuracy, and efficiency. Businesses may use cognitive computing and AI to their advantage to obtain a competitive edge in today’s data-driven world by knowing their capabilities and possibilities [1].展开更多
基金This project is supported by Provincial Youth Science Foundation of Shanxi China (No.20011020)National Natural Science Foundation of China (No.59975064).
文摘The coal-rock interface recognition method based on multi-sensor data fusiontechnique is put forward because of the localization of single type sensor recognition method. Themeasuring theory based on multi-sensor data fusion technique is analyzed, and hereby the testplatform of recognition system is manufactured. The advantage of data fusion with the fuzzy neuralnetwork (FNN) technique has been probed. The two-level FNN is constructed and data fusion is carriedout. The experiments show that in various conditions the method can always acquire a much higherrecognition rate than normal ones.
文摘In order to ensure the service security of space structures under wind load, the stress identification method based on the combination of fuzzy pattern recognition and information fusion technique is proposed, in which the measurements of limited strain sensors arranged on the structure are used. Firstly, the structure is divided into several regions according to the similarity and the most unfavorable region is selected to be the key region for stress identification, while the different numbers of the strain sensors are located on the key region and the normal regions; secondly, the different stress distributions of the key region are obtained based on the measurements of the strain sensors located on the key region and the normal regions separately, in which the fuzzy pattern recognition is used to identify the different stress distributions; thirdly, the stress distributions obtained by the measurements of sensors in normal regions are selected to calculate the synthesized stress distribution of the key region by D-S evidence theory; fourthly, the weighted fusion algorithm is used to assign the different fusion coefficients to the selected stress distributions obtained by the measurements of the normal regions and the key region, while the synthesized stress distribution of the key region can be obtained. Numerical study on a lattice shell model is carried out to validate the reliability of the proposed stress identification method. The simulated results indicate that the method can improve identification accuracy and be effective by different noise disturbing.
文摘This work focuses on radial basis functions containing no parameters with themain objective being to comparatively explore more of their effectiveness.For this,a total of sixteen forms of shapeless radial basis functions are gathered and investigated under the context of the pattern recognition problem through the structure of radial basis function neural networks,with the use of the Representational Capability(RC)algorithm.Different sizes of datasets are disturbed with noise before being imported into the algorithm as‘training/testing’datasets.Each shapeless radial basis function is monitored carefully with effectiveness criteria including accuracy,condition number(of the interpolation matrix),CPU time,CPU-storage requirement,underfitting and overfitting aspects,and the number of centres being generated.For the sake of comparison,the well-known Multiquadric-radial basis function is included as a representative of shape-contained radial basis functions.The numerical results have revealed that some forms of shapeless radial basis functions show good potential and are even better than Multiquadric itself indicating strongly that the future use of radial basis function may no longer face the pain of choosing a proper shape when shapeless forms may be equally(or even better)effective.
文摘The artificial neural network (ANN) and the pattern recognition were applied to study the correlation of enthalpies of fusion for divalent rare earth halides with their microstructural parameters,such as ionic radius and electronegativity. The model,represented by a back-propagation netal network, was trained with a 12 set of published data for divalent rare earth halides and then was used to predict the unknown ones. Also the criterion equations were ptesented to determine the enthalpies of fuSion for divalent rare earth halides using pattern recognition in mis work. The results from the model in ANN and criterion equations are in very good agreement with reference data.
文摘In this paper, we conduct research on the modern precision e-commerce marketing model under the big data and pattern recognition background. Large amount of consumption data provides the electricity enterprises grasp the user consumption pattern and the basis of the electric business enterprise through the use of big data can be personalized, accurate and intelligent advertising push service, service mode for the creation of more interesting and effective. Under this basis, electricity companies can also pass the assurance of pair of big data, looking for better increase user stickiness, development of new products and services, the ways and methods to reduce operational costs and accordingly, we propose the novel perspectives on the corresponding issues for the systematic level enhancement that provides the novel methodology of precision e-commerce marketing.
基金supported in part by the National Nature Science Fundation(61174009,61203323)Youth Foundation of Hebei Province(F2016202327)+3 种基金the Colleges and Universities in Hebei Province Science and Technology Research Project(ZC2016020)supported in part by Key Project of NSFC(61533009)111 Project(B08015)Research Project(JCYJ20150403161923519)
文摘Based on the regularity nature of lower-limb motion,an intent pattern recognition approach for above-knee prosthesis is proposed in this paper. To remedy the defects of recognizer based on electromyogram(EMG), we develop a pure mechanical sensor architecture for intent pattern recognition of lower-limb motion. The sensor system is composed of an accelerometer, a gyroscope mounted on the prosthetic socket, and two pressure sensors mounted under the sole. To compensate the delay in the control of prosthesis, the signals in the stance phase are used to predict the terrain and speed in the swing phase. Specifically, the intent pattern recognizer utilizes intraclass correlation coefficient(ICC) according to the Cartesian product of walking speed and terrain. Moreover, the sensor data are fused via DempsterShafer's theory. And hidden Markov model(HMM) is used to recognize the realtime motion state with the reference of the prior step. The proposed method can infer the prosthesis user's intent of walking on different terrain, which includes level ground,stair ascent, stair descent, up and down ramp. The experiments demonstrate that the intent pattern recognizer is capable of identifying five typical terrain-modes with the rate of 95.8%. The outcome of this investigation is expected to substantially improve the control performance of powered above-knee prosthesis.
基金Sponsored by the National High Technology Research Development Program of China(Grant No.2001AA413130).
文摘The main aim for a 2D spiral recognition algorithm is to learn to discriminate between data distributed on two distinct strands in the x-y plane.This problem is of critical importance since it incorporates temporal characteristics often found in real-time applications.Previous work with this benchmark has witnessed poor results with statistical methods such as discriminant analysis and tedious procedures for better results with neural networks.This paper presents a max-density covering learning algorithm based on constructive neural networks which is efficient in terms of the recognition rate and the speed of recognition.The results show that it is possible to solve the spiral problem instantaneously(up to 100% correct classification on the test set).
文摘Compressed sensing (CS) is a new technique for simultaneous data sampling and compression. In this paper, we propose a novel method called distributed compressed sensing for image using block measurements data fusion. Firstly, original image is divided into small blocks and each block is sampled independently using the same measurement operator, to obtain the smaller encoded sparser coefficients and stored measurements matrix and its vectors.? Secondly, original image is reconstructed using the block measurements fusion and recovery transform. Finally, several numerical experiments demonstrate that our method has a much lower data storage and calculation cost as well as high quality of reconstruction when compared with other existing schemes. We believe it is of great practical potentials in the network communication as well as pattern recognition domain.
基金Dr. Steve Jones, Scientific Advisor of the Canon Foundation for Scientific Research (7200 The Quorum, Oxford Business Park, Oxford OX4 2JZ, England). Canon Foundation for Scientific Research funded the UPC 2013 tuition fees of the corresponding author during her writing this article
文摘In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer 'occurred' and transfer 'not occurred'. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies.
基金supported by the National Key Research and Development Program of China(No.2017YFB0902900,No.2017YFB0902901)National Natural Science Foundation of China(No.51627811,No.51725702)the Fundamental Research Funds for the Central Universities(No.2018ZD01)
文摘Smart grids are increasingly dependent on data with the rapid development of communication and measurement.As one of the important data sources of smart grids,phasor measurement unit(PMU)is facing the high risk from attacks.Compared with cyber attacks,global position system(GPS)spoofing attacks(GSAs)are easier to implement because they can be exploited by portable devices,without the need to access the physical system.Therefore,this paper proposes a novel method for pattern recognition of GSA and an additional function of the proposed method is the data correction to the phase angle difference(PAD)deviation.Specifically,this paper analyzes the effect of GSA on PMU measurement and gives two common patterns of GSA,i.e.,the step attack and the ramp attack.Then,the method of estimating the PAD deviation across a transmission line introduced by GSA is proposed,which does not require the line parameters.After obtaining the estimated PAD deviations,the pattern of GSA can be recognized by hypothesis tests and correlation coefficients according to the statistical characteristics of the estimated PAD deviations.Finally,with the case studies,the effectiveness of the proposed method is demonstrated,and the success rate of the pattern recognition and the online performance of the proposed method are analyzed.
文摘The non-monotonic problem exited in information fusion systems is solved. Through the introducing of non-monotonic reasoning method, which was realized with ATMS, into the information fusion system, it gains the ability to process insufficient information with flexibility and non-monotonic behavior. In the simulation test of our system, our system manifests its ability of dealing the insufficient and contradictory information, which partly solves the decision dilemma brought out by the insufficient information in battle situations. The information fusion target recognition system can process the information in battle situation fast and with flexibility.
文摘The scientists are dedicated to studying the detection of Alzheimer’s disease onset to find a cure, or at the very least, medication that can slow the progression of the disease. This article explores the effectiveness of longitudinal data analysis, artificial intelligence, and machine learning approaches based on magnetic resonance imaging and positron emission tomography neuroimaging modalities for progression estimation and the detection of Alzheimer’s disease onset. The significance of feature extraction in highly complex neuroimaging data, identification of vulnerable brain regions, and the determination of the threshold values for plaques, tangles, and neurodegeneration of these regions will extensively be evaluated. Developing automated methods to improve the aforementioned research areas would enable specialists to determine the progression of the disease and find the link between the biomarkers and more accurate detection of Alzheimer’s disease onset.
文摘Combining both visible and infrared object information, multispectral data is a promising source data for automatic maritime ship recognition. In this paper, in order to take advantage of deep convolutional neural network and multispectral data, we model multispectral ship recognition task into a convolutional feature fusion problem, and propose a feature fusion architecture called Hybrid Fusion. We fine-tune the VGG-16 model pre-trained on ImageNet through three channels single spectral image and four channels multispectral images, and use existing regularization techniques to avoid over-fitting problem. Hybrid Fusion as well as the other three feature fusion architectures is investigated. Each fusion architecture consists of visible image and infrared image feature extraction branches, in which the pre-trained and fine-tuned VGG-16 models are taken as feature extractor. In each fusion architecture, image features of two branches are firstly extracted from the same layer or different layers of VGG-16 model. Subsequently, the features extracted from the two branches are flattened and concatenated to produce a multispectral feature vector, which is finally fed into a classifier to achieve ship recognition task. Furthermore, based on these fusion architectures, we also evaluate recognition performance of a feature vector normalization method and three combinations of feature extractors. Experimental results on the visible and infrared ship (VAIS) dataset show that the best Hybrid Fusion achieves 89.6% mean per-class recognition accuracy on daytime paired images and 64.9% on nighttime infrared images, and outperforms the state-of-the-art method by 1.4% and 3.9%, respectively.
文摘A volcano can be defined as a complex system, not least for the hidden clues related to its internal nature. Innovative models grounded in the Artificial Sciences, have been proposed for a novel pattern recognition analysis at Mt. Etna volcano. The reference monitoring dataset dealt with real data of 28 parameters collected between January 2001 and April 2005, during which the volcano underwent the July-August 2001, October 2002-January 2003 and September 2004-April 2005 flank eruptions. There were 301 eruptive days out of an overall number of 1581 investigated days. The analysis involved successive steps. First, the TWIST algorithm was used to select the most predictive attributes associated with the flank eruption target. During his work, the algorithm TWIST selected 11 characteristics of the input vector: among them SO<sub>2</sub> and CO<sub>2</sub> emissions, and also many other attributes whose linear correlation with the target was very low. A 5 × 2 Cross Validation protocol estimated the sensitivity and specificity of pattern recognition algorithms. Finally, different classification algorithms have been compared to understand if this pattern recognition task may have suitable results and which algorithm performs best. Best results (higher than 97% accuracy) have been obtained after performing advanced Artificial Neural Networks, with a sensitivity and specificity estimates over 97% and 98%, respectively. The present analysis highlights that a suitable monitoring dataset inferred hidden information about volcanic phenomena, whose highly non-linear processes are enhanced.
文摘How organizations analyze and use data for decision-making has been changed by cognitive computing and artificial intelligence (AI). Cognitive computing solutions can translate enormous amounts of data into valuable insights by utilizing the power of cutting-edge algorithms and machine learning, empowering enterprises to make deft decisions quickly and efficiently. This article explores the idea of cognitive computing and AI in decision-making, emphasizing its function in converting unvalued data into valuable knowledge. It details the advantages of utilizing these technologies, such as greater productivity, accuracy, and efficiency. Businesses may use cognitive computing and AI to their advantage to obtain a competitive edge in today’s data-driven world by knowing their capabilities and possibilities [1].
文摘识别非驾驶行为是提高驾驶安全性的重要手段之一。目前基于骨架序列和图像的融合识别方法具有计算量大和特征融合困难的问题。针对上述问题,本文提出一种基于多尺度骨架图和局部视觉上下文融合的驾驶员行为识别模型(skeleton-image based behavior recognition network,SIBBR-Net)。SIBBR-Net通过基于多尺度图的图卷积网络和基于局部视觉及注意力机制的卷积神经网络,充分提取运动和外观特征,较好地平衡了模型表征能力和计算量间的关系。基于手部运动的特征双向引导学习策略、自适应特征融合模块和静态特征空间上的辅助损失,使运动和外观特征间互相引导更新并实现自适应融合。最终在Drive&Act数据集进行算法测试,SIBBR-Net在动态标签和静态标签条件下的平均正确率分别为61.78%和80.42%,每秒浮点运算次数为25.92G,较最优方法降低了76.96%。