In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be est...In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.展开更多
Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of ge...Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of geological, geophysical and seismological data through a spatial index showing the presence or absence of a potential seismic source feature in the input data. The spatial matching index (SMI) is calculated to define the coincidence of independent data showing any indications for existence of a fault structure. It is applied for hazard assessment of Bulgaria through quantification of the seismic potential of 416 square blocks, 20 × 20 km in size covering the entire territory of Bulgaria and extended by 20 km outside of the country borders. All operations are carried out in GIS environment using its capabilities to work with different types of georeferenced spatial data. Results show that the highest seismic potential (largest SMI) is observed in 56 block elements (13% of the territory) clearly delineating cores of the source zones. Partial match is registered in 98 block elements when one of the features is missing. Not any evidence for earthquake occurrence is predicted by our calculation in 117 elements, comprising 28% of the examined area. The quantitative parameter for spatial data integration which is obtained in the present research may be used to analyze information regardless of its type and purpose.展开更多
The Tahiti-Darwin Southern Oscillation index provided by Climate Analysis Center of USA has been used in numerous studies. But, it has some deficiency. It contains noise mainly due to high month-to-month variability. ...The Tahiti-Darwin Southern Oscillation index provided by Climate Analysis Center of USA has been used in numerous studies. But, it has some deficiency. It contains noise mainly due to high month-to-month variability. In order to reduce the level of noise in the SO index, this paper introduces a fully data-adaptive filter based on singular spectrum analysis. Another interesting aspect of the filter is that it can be used to fill data gaps of the SO index by an iterative process. Eventually, a noiseless long-period data series without any gaps is obtained.展开更多
基金Supported by the National Natural Science Foundation of China (10571008)the Natural Science Foundation of Henan (092300410149)the Core Teacher Foundationof Henan (2006141)
文摘In this article, a partially linear single-index model /or longitudinal data is investigated. The generalized penalized spline least squares estimates of the unknown parameters are suggested. All parameters can be estimated simultaneously by the proposed method while the feature of longitudinal data is considered. The existence, strong consistency and asymptotic normality of the estimators are proved under suitable conditions. A simulation study is conducted to investigate the finite sample performance of the proposed method. Our approach can also be used to study the pure single-index model for longitudinal data.
文摘Probabilistic seismic hazard assessment (PSHA) takes into account as much data as possible for defining the initial seismic source zone model. In response to this, an algorithm has been developed for integration of geological, geophysical and seismological data through a spatial index showing the presence or absence of a potential seismic source feature in the input data. The spatial matching index (SMI) is calculated to define the coincidence of independent data showing any indications for existence of a fault structure. It is applied for hazard assessment of Bulgaria through quantification of the seismic potential of 416 square blocks, 20 × 20 km in size covering the entire territory of Bulgaria and extended by 20 km outside of the country borders. All operations are carried out in GIS environment using its capabilities to work with different types of georeferenced spatial data. Results show that the highest seismic potential (largest SMI) is observed in 56 block elements (13% of the territory) clearly delineating cores of the source zones. Partial match is registered in 98 block elements when one of the features is missing. Not any evidence for earthquake occurrence is predicted by our calculation in 117 elements, comprising 28% of the examined area. The quantitative parameter for spatial data integration which is obtained in the present research may be used to analyze information regardless of its type and purpose.
文摘The Tahiti-Darwin Southern Oscillation index provided by Climate Analysis Center of USA has been used in numerous studies. But, it has some deficiency. It contains noise mainly due to high month-to-month variability. In order to reduce the level of noise in the SO index, this paper introduces a fully data-adaptive filter based on singular spectrum analysis. Another interesting aspect of the filter is that it can be used to fill data gaps of the SO index by an iterative process. Eventually, a noiseless long-period data series without any gaps is obtained.