Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing ND...Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing NDN faces three significant challenges,including security,privacy,and routing.In particular,security attacks,such as Content Poisoning Attacks(CPA),can jeopardize legitimate vehicles with malicious content.For instance,attacker host vehicles can serve consumers with invalid information,which has dire consequences,including road accidents.In such a situation,trust in the content-providing vehicles brings a new challenge.On the other hand,ensuring privacy and preventing unauthorized access in vehicular(VNDN)is another challenge.Moreover,NDN’s pull-based content retrieval mechanism is inefficient for delivering emergency messages in VNDN.In this connection,our contribution is threefold.Unlike existing rule-based reputation evaluation,we propose a Machine Learning(ML)-based reputation evaluation mechanism that identifies CPA attackers and legitimate nodes.Based on ML evaluation results,vehicles accept or discard served content.Secondly,we exploit a decentralized blockchain system to ensure vehicles’privacy by maintaining their information in a secure digital ledger.Finally,we improve the default routing mechanism of VNDN from pull to a push-based content dissemination using Publish-Subscribe(Pub-Sub)approach.We implemented and evaluated our ML-based classification model on a publicly accessible BurST-Asutralian dataset for Misbehavior Detection(BurST-ADMA).We used five(05)hybrid ML classifiers,including Logistic Regression,Decision Tree,K-Nearest Neighbors,Random Forest,and Gaussian Naive Bayes.The qualitative results indicate that Random Forest has achieved the highest average accuracy rate of 100%.Our proposed research offers the most accurate solution to detect CPA in VNDN for safe,secure,and reliable vehicle communication.展开更多
Recent advancements in the Vehicular Ad-hoc Network(VANET)have tremendously addressed road-related challenges.Specifically,Named Data Networking(NDN)in VANET has emerged as a vital technology due to its outstanding fe...Recent advancements in the Vehicular Ad-hoc Network(VANET)have tremendously addressed road-related challenges.Specifically,Named Data Networking(NDN)in VANET has emerged as a vital technology due to its outstanding features.However,the NDN communication framework fails to address two important issues.The current NDN employs a pull-based content retrieval network,which is inefficient in disseminating crucial content in Vehicular Named Data Networking(VNDN).Additionally,VNDN is vulnerable to illusion attackers due to the administrative-less network of autonomous vehicles.Although various solutions have been proposed for detecting vehicles’behavior,they inadequately addressed the challenges specific to VNDN.To deal with these two issues,we propose a novel push-based crucial content dissemination scheme that extends the scope of VNDN from pullbased content retrieval to a push-based content forwarding mechanism.In addition,we exploitMachine Learning(ML)techniques within VNDN to detect the behavior of vehicles and classify them as attackers or legitimate.We trained and tested our system on the publicly accessible dataset Vehicular Reference Misbehavior(VeReMi).We employed fiveML classification algorithms and constructed the bestmodel for illusion attack detection.Our results indicate that RandomForest(RF)achieved excellent accuracy in detecting all illusion attack types in VeReMi,with an accuracy rate of 100%for type 1 and type 2,96%for type 4 and type 16,and 95%for type 8.Thus,RF can effectively evaluate the behavior of vehicles and identify attacker vehicles with high accuracy.The ultimate goal of our research is to improve content exchange and secureVNDNfromattackers.Thus,ourML-based attack detection and preventionmechanismensures trustworthy content dissemination and prevents attacker vehicles from sharing misleading information in VNDN.展开更多
Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data N...Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure rates.This paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure rates.SCD constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse paths.Only the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are achieved.SCD is evaluated,and the data results demonstrate that SCD achieves the above objectives.展开更多
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ...The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.展开更多
Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. W...Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.展开更多
Named Data Networking(NDN)improves the data delivery efficiency by caching contents in routers. To prevent corrupted and faked contents be spread in the network,NDN routers should verify the digital signature of each ...Named Data Networking(NDN)improves the data delivery efficiency by caching contents in routers. To prevent corrupted and faked contents be spread in the network,NDN routers should verify the digital signature of each published content. Since the verification scheme in NDN applies the asymmetric encryption algorithm to sign contents,the content verification overhead is too high to satisfy wire-speed packet forwarding. In this paper, we propose two schemes to improve the verification performance of NDN routers to prevent content poisoning. The first content verification scheme, called "user-assisted",leads to the best performance, but can be bypassed if the clients and the content producer collude. A second scheme, named ``RouterCooperation ‘', prevents the aforementioned collusion attack by making edge routers verify the contents independently without the assistance of users and the core routers no longer verify the contents. The Router-Cooperation verification scheme reduces the computing complexity of cryptographic operation by replacing the asymmetric encryption algorithm with symmetric encryption algorithm.The simulation results demonstrate that this Router-Cooperation scheme can speed up18.85 times of the original content verification scheme with merely extra 80 Bytes transmission overhead.展开更多
Named Data Networking(NDN)is one of the most excellent future Internet architectures and every router in NDN has the capacity of caching contents passing by.It greatly reduces network traffic and improves the speed of...Named Data Networking(NDN)is one of the most excellent future Internet architectures and every router in NDN has the capacity of caching contents passing by.It greatly reduces network traffic and improves the speed of content distribution and retrieval.In order to make full use of the limited caching space in routers,it is an urgent challenge to make an efficient cache replacement policy.However,the existing cache replacement policies only consider very few factors that affect the cache performance.In this paper,we present a cache replacement policy based on multi-factors for NDN(CRPM),in which the content with the least cache value is evicted from the caching space.CRPM fully analyzes multi-factors that affect the caching performance,puts forward the corresponding calculation methods,and utilize the multi-factors to measure the cache value of contents.Furthermore,a new cache value function is constructed,which makes the content with high value be stored in the router as long as possible,so as to ensure the efficient use of cache resources.The simulation results show that CPRM can effectively improve cache hit ratio,enhance cache resource utilization,reduce energy consumption and decrease hit distance of content acquisition.展开更多
This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous ...This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.展开更多
In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.F...In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.Firstly,the NDN data resource is located by means of the DNS mechanism,and the gateway IP address of the NDN network where the data resource is located is found.Then,the transmission between different NDNs across the IP network is implemented based on the tunnel technology.In addition,in order to achieve efficient and fast NDN data forwarding,we have added a small number of NDN service nodes in the IP network,and proposed an adaptive probabilistic forwarding strategy and a link cost function-based forwarding strategy to make NDN data obtaining the cache service provided by the NDN service node as much as possible.The results of analysis and simulation experiments show that,the interconnectionmethod of NDN across IP network proposed is generally effective and feasible,and the link cost function forwarding strategy is better than the adaptive probability forwarding strategy.展开更多
The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the chan...The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the channel occupation of each source,the concept of effective bandwidth(EB)proposed by Kelly is used.In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model.This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking.In particular we will study two differentiated cases:dispatches following a Gaussian and Exponential distribution.The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms.The estimation process worked much better in the Gaussian distribution case than in the Exponential one.展开更多
Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offer...Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offers opportunities but may also bear risks. A hitherto neglected aspect is the possible increase in power consumption as smart devices in IoT applications are expected to be reachable by other devices at all times. This implies that the device is consuming electrical energy even when it is not in use for its primary function. Many researchers’ communities have started addressing storage ability like cache memory of smart devices using the concept called—Named Data Networking (NDN) to achieve better energy efficient communication model. In NDN, memory or buffer overflow is the common challenge especially when internal memory of node exceeds its limit and data with highest degree of freshness may not be accommodated and entire scenarios behaves like a traditional network. In such case, Data Caching is not performed by intermediate nodes to guarantee highest degree of freshness. On the periodical updates sent from data producers, it is exceedingly demanded that data consumers must get up to date information at cost of lease energy. Consequently, there is challenge in maintaining tradeoff between freshness energy consumption during Publisher-Subscriber interaction. In our work, we proposed the architecture to overcome cache strategy issue by Smart Caching Algorithm for improvement in memory management and data freshness. The smart caching strategy updates the data at precise interval by keeping garbage data into consideration. It is also observed from experiment that data redundancy can be easily obtained by ignoring/dropping data packets for the information which is not of interest by other participating nodes in network, ultimately leading to optimizing tradeoff between freshness and energy required.展开更多
Named-data Networking(NDN) is a promising future Internet architecture, which introduces some evolutionary elements into layer-3, e.g., consumer-driven communication, soft state on data forwarding plane and hop-byhop ...Named-data Networking(NDN) is a promising future Internet architecture, which introduces some evolutionary elements into layer-3, e.g., consumer-driven communication, soft state on data forwarding plane and hop-byhop traffic control. And those elements ensure data holders to solely return the requested data within the lifetime of the request, instead of pushing data whenever needed and whatever it is. Despite the dispute on the advantages and their prices, this pattern requires data consumers to keep sending requests at the right moments for continuous data transmission, resulting in significant forwarding cost and sophisticated application design. In this paper, we propose Interest Set(IS) mechanism, which compresses a set of similar Interests into one request, and maintains a relative long-term data returning path with soft state and continuous feedback from upstream. In this way, IS relaxes the above requirement, and scales NDN data forwarding by reducing forwarded requests and soft states that are needed to retrieve a given set of data.展开更多
This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously ...This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.展开更多
The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections an...The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.展开更多
Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict th...Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.展开更多
Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune de...Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance.展开更多
Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Int...Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Internet is used in wireless ad hoc network.Internet is based on Transmission Control Protocol(TCP)/Internet Protocol(IP)network where clients and servers interact with each other with the help of IP in a pre-defined environment.Internet fetches data from a fixed location.Data redundancy,mobility,and location dependency are the main issues of the IP network paradigm.All these factors result in poor performance of wireless ad hoc networks.The main disadvantage of IP is that,it does not provide in-network caching.Therefore,there is a need to move towards a new network that overcomes these limitations.Named Data Network(NDN)is a network that overcomes these limitations.NDN is a project of Information-centric Network(ICN).NDN provides in-network caching which helps in fast response to user queries.Implementing NDN in wireless ad hoc network provides many benefits such as caching,mobility,scalability,security,and privacy.By considering the certainty,in this survey paper,we present a comprehensive survey on Caching Strategies in NDN-based Wireless AdHocNetwork.Various cachingmechanism-based results are also described.In the last,we also shed light on the challenges and future directions of this promising field to provide a clear understanding of what caching-related problems exist in NDN-based wireless ad hoc networks.展开更多
Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data ...Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.展开更多
Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with s...Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.展开更多
As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processin...As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.展开更多
基金Supporting Project Number(RSPD2023R553),King Saud University,Riyadh,Saudi Arabia.
文摘Named Data Networking(NDN)is gaining a significant attention in Vehicular Ad-hoc Networks(VANET)due to its in-network content caching,name-based routing,and mobility-supporting characteristics.Nevertheless,existing NDN faces three significant challenges,including security,privacy,and routing.In particular,security attacks,such as Content Poisoning Attacks(CPA),can jeopardize legitimate vehicles with malicious content.For instance,attacker host vehicles can serve consumers with invalid information,which has dire consequences,including road accidents.In such a situation,trust in the content-providing vehicles brings a new challenge.On the other hand,ensuring privacy and preventing unauthorized access in vehicular(VNDN)is another challenge.Moreover,NDN’s pull-based content retrieval mechanism is inefficient for delivering emergency messages in VNDN.In this connection,our contribution is threefold.Unlike existing rule-based reputation evaluation,we propose a Machine Learning(ML)-based reputation evaluation mechanism that identifies CPA attackers and legitimate nodes.Based on ML evaluation results,vehicles accept or discard served content.Secondly,we exploit a decentralized blockchain system to ensure vehicles’privacy by maintaining their information in a secure digital ledger.Finally,we improve the default routing mechanism of VNDN from pull to a push-based content dissemination using Publish-Subscribe(Pub-Sub)approach.We implemented and evaluated our ML-based classification model on a publicly accessible BurST-Asutralian dataset for Misbehavior Detection(BurST-ADMA).We used five(05)hybrid ML classifiers,including Logistic Regression,Decision Tree,K-Nearest Neighbors,Random Forest,and Gaussian Naive Bayes.The qualitative results indicate that Random Forest has achieved the highest average accuracy rate of 100%.Our proposed research offers the most accurate solution to detect CPA in VNDN for safe,secure,and reliable vehicle communication.
基金supported by the Researchers Supporting Project Number(RSP2023R34)King Saud University,Riyadh,Saudi Arabia。
文摘Recent advancements in the Vehicular Ad-hoc Network(VANET)have tremendously addressed road-related challenges.Specifically,Named Data Networking(NDN)in VANET has emerged as a vital technology due to its outstanding features.However,the NDN communication framework fails to address two important issues.The current NDN employs a pull-based content retrieval network,which is inefficient in disseminating crucial content in Vehicular Named Data Networking(VNDN).Additionally,VNDN is vulnerable to illusion attackers due to the administrative-less network of autonomous vehicles.Although various solutions have been proposed for detecting vehicles’behavior,they inadequately addressed the challenges specific to VNDN.To deal with these two issues,we propose a novel push-based crucial content dissemination scheme that extends the scope of VNDN from pullbased content retrieval to a push-based content forwarding mechanism.In addition,we exploitMachine Learning(ML)techniques within VNDN to detect the behavior of vehicles and classify them as attackers or legitimate.We trained and tested our system on the publicly accessible dataset Vehicular Reference Misbehavior(VeReMi).We employed fiveML classification algorithms and constructed the bestmodel for illusion attack detection.Our results indicate that RandomForest(RF)achieved excellent accuracy in detecting all illusion attack types in VeReMi,with an accuracy rate of 100%for type 1 and type 2,96%for type 4 and type 16,and 95%for type 8.Thus,RF can effectively evaluate the behavior of vehicles and identify attacker vehicles with high accuracy.The ultimate goal of our research is to improve content exchange and secureVNDNfromattackers.Thus,ourML-based attack detection and preventionmechanismensures trustworthy content dissemination and prevents attacker vehicles from sharing misleading information in VNDN.
基金supported by the National Natural Science Foundation of China under Grant No.62032013the LiaoNing Revitalization Talents Program under Grant No.XLYC1902010.
文摘Vehicular data misuse may lead to traffic accidents and even loss of life,so it is crucial to achieve secure vehicular data communications.This paper focuses on secure vehicular data communications in the Named Data Networking(NDN).In NDN,names,provider IDs and data are transmitted in plaintext,which exposes vehicular data to security threats and leads to considerable data communication costs and failure rates.This paper proposes a Secure vehicular Data Communication(SDC)approach in NDN to supress data communication costs and failure rates.SCD constructs a vehicular backbone to reduce the number of authenticated nodes involved in reverse paths.Only the ciphtertext of the name and data is included in the signed Interest and Data and transmitted along the backbone,so the secure data communications are achieved.SCD is evaluated,and the data results demonstrate that SCD achieves the above objectives.
文摘The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests.
基金This work was supported by the National Key Basic Re- search Program of China under Grant No. 2011 CB302702 the National Natural Science Foundation of China under Grants No. 61132001, No. 61120106008, No. 61070187, No. 60970133, No. 61003225 the Beijing Nova Program.
文摘Greening Internet is an important issue now, which studies the way to reduce the increas- ing energy expenditure. Our work focuses on the network infrastructure and considers its energy awareness in traffic routing. We formulate the model by traffic engineering to achieve link rate a- daption, and also predict traffic matrices to pre- serve network stability. However, we realize that there is a tradeoff between network performance and energy efficiency, which is an obvious issue as Internet grows larger and larger. An essential cause is the huge traffic, and thus we try to fred its so- lution from a novel architecture called Named Data Networking (NDN) which tent in edge routers and can flexibly cache con- decrease the backbone traffic. We combine our methods with NDN, and finally improve both the network performance and the energy efficiency. Our work shows that it is effective, necessary and feasible to consider green- ing idea in the design of future Internet.
基金financially supported by Shenzhen Key Fundamental Research Projects(Grant No.:JCYJ20170306091556329).
文摘Named Data Networking(NDN)improves the data delivery efficiency by caching contents in routers. To prevent corrupted and faked contents be spread in the network,NDN routers should verify the digital signature of each published content. Since the verification scheme in NDN applies the asymmetric encryption algorithm to sign contents,the content verification overhead is too high to satisfy wire-speed packet forwarding. In this paper, we propose two schemes to improve the verification performance of NDN routers to prevent content poisoning. The first content verification scheme, called "user-assisted",leads to the best performance, but can be bypassed if the clients and the content producer collude. A second scheme, named ``RouterCooperation ‘', prevents the aforementioned collusion attack by making edge routers verify the contents independently without the assistance of users and the core routers no longer verify the contents. The Router-Cooperation verification scheme reduces the computing complexity of cryptographic operation by replacing the asymmetric encryption algorithm with symmetric encryption algorithm.The simulation results demonstrate that this Router-Cooperation scheme can speed up18.85 times of the original content verification scheme with merely extra 80 Bytes transmission overhead.
基金This research was funded by the National Natural Science Foundation of China(No.61862046)the Inner Mongolia Natural Science Foundation of China under Grant No.2018MS06024+2 种基金the Research Project of Higher Education School of Inner Mongolia Autonomous Region under Grant NJZY18010the Inner Mongolia Autonomous Region Science and Technology Achievements Transformation Project(No.CGZH2018124)the CERNET Innovation Project under Grant No.NGII20180626.
文摘Named Data Networking(NDN)is one of the most excellent future Internet architectures and every router in NDN has the capacity of caching contents passing by.It greatly reduces network traffic and improves the speed of content distribution and retrieval.In order to make full use of the limited caching space in routers,it is an urgent challenge to make an efficient cache replacement policy.However,the existing cache replacement policies only consider very few factors that affect the cache performance.In this paper,we present a cache replacement policy based on multi-factors for NDN(CRPM),in which the content with the least cache value is evicted from the caching space.CRPM fully analyzes multi-factors that affect the caching performance,puts forward the corresponding calculation methods,and utilize the multi-factors to measure the cache value of contents.Furthermore,a new cache value function is constructed,which makes the content with high value be stored in the router as long as possible,so as to ensure the efficient use of cache resources.The simulation results show that CPRM can effectively improve cache hit ratio,enhance cache resource utilization,reduce energy consumption and decrease hit distance of content acquisition.
基金This research was funded by the European Regional Development Fund in the Research Centre of Advanced Mechatronic Systems project, project number CZ.02.1.01/0.0/0.0/16_019 /0000867by the Ministry of Education of the Czech Republic, Project No. SP2021/32.
文摘This pilot study focuses on employment of hybrid LMS-ICA system for in-vehicle background noise reduction.Modern vehicles are nowadays increasingly supporting voice commands,which are one of the pillars of autonomous and SMART vehicles.Robust speaker recognition for context-aware in-vehicle applications is limited to a certain extent by in-vehicle back-ground noise.This article presents the new concept of a hybrid system which is implemented as a virtual instrument.The highly modular concept of the virtual car used in combination with real recordings of various driving scenarios enables effective testing of the investigated methods of in-vehicle background noise reduction.The study also presents a unique concept of an adaptive system using intelligent clusters of distributed next generation 5G data networks,which allows the exchange of interference information and/or optimal hybrid algorithm settings between individual vehicles.On average,the unfiltered voice commands were successfully recognized in 29.34%of all scenarios,while the LMS reached up to 71.81%,and LMS-ICA hybrid improved the performance further to 73.03%.
基金supported by Beijing Advanced Innovation Center for Materials Genome Engineering,Beijing Information Science and Technology University。
文摘In order to extend the application scope of NDN and realize the transmission of different NDNs across IP networks,a method for interconnecting NDN networks distributed in different areas with IP networks is proposed.Firstly,the NDN data resource is located by means of the DNS mechanism,and the gateway IP address of the NDN network where the data resource is located is found.Then,the transmission between different NDNs across the IP network is implemented based on the tunnel technology.In addition,in order to achieve efficient and fast NDN data forwarding,we have added a small number of NDN service nodes in the IP network,and proposed an adaptive probabilistic forwarding strategy and a link cost function-based forwarding strategy to make NDN data obtaining the cache service provided by the NDN service node as much as possible.The results of analysis and simulation experiments show that,the interconnectionmethod of NDN across IP network proposed is generally effective and feasible,and the link cost function forwarding strategy is better than the adaptive probability forwarding strategy.
文摘The Generalized Markov Fluid Model(GMFM)is assumed for modeling sources in the network because it is versatile to describe the traffic fluctuations.In order to estimate resources allocations or in other words the channel occupation of each source,the concept of effective bandwidth(EB)proposed by Kelly is used.In this paper we use an expression to determine the EB for this model which is of particular interest because it allows expressing said magnitude depending on the parameters of the model.This paper provides EB estimates for this model applying Kernel Estimation techniques in data networking.In particular we will study two differentiated cases:dispatches following a Gaussian and Exponential distribution.The performance of the proposed method is analyzed using simulated traffic traces generated by Monte Carlo Markov Chain algorithms.The estimation process worked much better in the Gaussian distribution case than in the Exponential one.
文摘Over the last few years, the Internet of Things (IoT) has become an omnipresent term. The IoT expands the existing common concepts, anytime and anyplace to the connectivity for anything. The proliferation in IoT offers opportunities but may also bear risks. A hitherto neglected aspect is the possible increase in power consumption as smart devices in IoT applications are expected to be reachable by other devices at all times. This implies that the device is consuming electrical energy even when it is not in use for its primary function. Many researchers’ communities have started addressing storage ability like cache memory of smart devices using the concept called—Named Data Networking (NDN) to achieve better energy efficient communication model. In NDN, memory or buffer overflow is the common challenge especially when internal memory of node exceeds its limit and data with highest degree of freshness may not be accommodated and entire scenarios behaves like a traditional network. In such case, Data Caching is not performed by intermediate nodes to guarantee highest degree of freshness. On the periodical updates sent from data producers, it is exceedingly demanded that data consumers must get up to date information at cost of lease energy. Consequently, there is challenge in maintaining tradeoff between freshness energy consumption during Publisher-Subscriber interaction. In our work, we proposed the architecture to overcome cache strategy issue by Smart Caching Algorithm for improvement in memory management and data freshness. The smart caching strategy updates the data at precise interval by keeping garbage data into consideration. It is also observed from experiment that data redundancy can be easily obtained by ignoring/dropping data packets for the information which is not of interest by other participating nodes in network, ultimately leading to optimizing tradeoff between freshness and energy required.
基金supported by the National Hightech R&D Program ("863" Program) of China (No.2013AA013505)the National Science Foundation of China (No.61472213)
文摘Named-data Networking(NDN) is a promising future Internet architecture, which introduces some evolutionary elements into layer-3, e.g., consumer-driven communication, soft state on data forwarding plane and hop-byhop traffic control. And those elements ensure data holders to solely return the requested data within the lifetime of the request, instead of pushing data whenever needed and whatever it is. Despite the dispute on the advantages and their prices, this pattern requires data consumers to keep sending requests at the right moments for continuous data transmission, resulting in significant forwarding cost and sophisticated application design. In this paper, we propose Interest Set(IS) mechanism, which compresses a set of similar Interests into one request, and maintains a relative long-term data returning path with soft state and continuous feedback from upstream. In this way, IS relaxes the above requirement, and scales NDN data forwarding by reducing forwarded requests and soft states that are needed to retrieve a given set of data.
文摘This paper addresses the problem of selecting a route for every pair of communicating nodes in a virtual circuit data network in order to minimize the average delay encountered by messages. The problem was previously modeled as a network of M/M/1 queues. Agenetic algorithm to solve this problem is presented. Extensive computational results across a variety of networks are reported. These results indicate that the presented solution procedure outperforms the other methods in the literature and is effective for a wide range of traffic loads.
文摘The 6th generation mobile networks(6G)network is a kind of multi-network interconnection and multi-scenario coexistence network,where multiple network domains break the original fixed boundaries to form connections and convergence.In this paper,with the optimization objective of maximizing network utility while ensuring flows performance-centric weighted fairness,this paper designs a reinforcement learning-based cloud-edge autonomous multi-domain data center network architecture that achieves single-domain autonomy and multi-domain collaboration.Due to the conflict between the utility of different flows,the bandwidth fairness allocation problem for various types of flows is formulated by considering different defined reward functions.Regarding the tradeoff between fairness and utility,this paper deals with the corresponding reward functions for the cases where the flows undergo abrupt changes and smooth changes in the flows.In addition,to accommodate the Quality of Service(QoS)requirements for multiple types of flows,this paper proposes a multi-domain autonomous routing algorithm called LSTM+MADDPG.Introducing a Long Short-Term Memory(LSTM)layer in the actor and critic networks,more information about temporal continuity is added,further enhancing the adaptive ability changes in the dynamic network environment.The LSTM+MADDPG algorithm is compared with the latest reinforcement learning algorithm by conducting experiments on real network topology and traffic traces,and the experimental results show that LSTM+MADDPG improves the delay convergence speed by 14.6%and delays the start moment of packet loss by 18.2%compared with other algorithms.
基金The Deanship of Scientific Research at Hashemite University partially funds this workDeanship of Scientific Research at the Northern Border University,Arar,KSA for funding this research work through the project number“NBU-FFR-2024-1580-08”.
文摘Cloud Datacenter Network(CDN)providers usually have the option to scale their network structures to allow for far more resource capacities,though such scaling options may come with exponential costs that contradict their utility objectives.Yet,besides the cost of the physical assets and network resources,such scaling may also imposemore loads on the electricity power grids to feed the added nodes with the required energy to run and cool,which comes with extra costs too.Thus,those CDNproviders who utilize their resources better can certainly afford their services at lower price-units when compared to others who simply choose the scaling solutions.Resource utilization is a quite challenging process;indeed,clients of CDNs usually tend to exaggerate their true resource requirements when they lease their resources.Service providers are committed to their clients with Service Level Agreements(SLAs).Therefore,any amendment to the resource allocations needs to be approved by the clients first.In this work,we propose deploying a Stackelberg leadership framework to formulate a negotiation game between the cloud service providers and their client tenants.Through this,the providers seek to retrieve those leased unused resources from their clients.Cooperation is not expected from the clients,and they may ask high price units to return their extra resources to the provider’s premises.Hence,to motivate cooperation in such a non-cooperative game,as an extension to theVickery auctions,we developed an incentive-compatible pricingmodel for the returned resources.Moreover,we also proposed building a behavior belief function that shapes the way of negotiation and compensation for each client.Compared to other benchmark models,the assessment results showthat our proposed models provide for timely negotiation schemes,allowing for better resource utilization rates,higher utilities,and grid-friend CDNs.
基金This research was funded by the Scientific Research Project of Leshan Normal University(No.2022SSDX002)the Scientific Plan Project of Leshan(No.22NZD012).
文摘Artificial immune detection can be used to detect network intrusions in an adaptive approach and proper matching methods can improve the accuracy of immune detection methods.This paper proposes an artificial immune detection model for network intrusion data based on a quantitative matching method.The proposed model defines the detection process by using network data and decimal values to express features and artificial immune mechanisms are simulated to define immune elements.Then,to improve the accuracy of similarity calculation,a quantitative matching method is proposed.The model uses mathematical methods to train and evolve immune elements,increasing the diversity of immune recognition and allowing for the successful detection of unknown intrusions.The proposed model’s objective is to accurately identify known intrusions and expand the identification of unknown intrusions through signature detection and immune detection,overcoming the disadvantages of traditional methods.The experiment results show that the proposed model can detect intrusions effectively.It has a detection rate of more than 99.6%on average and a false alarm rate of 0.0264%.It outperforms existing immune intrusion detection methods in terms of comprehensive detection performance.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1A2C1003549).
文摘Wireless Ad Hoc Networks consist of devices that are wirelessly connected.Mobile Ad Hoc Networks(MANETs),Internet of Things(IoT),and Vehicular Ad Hoc Networks(VANETs)are the main domains of wireless ad hoc network.Internet is used in wireless ad hoc network.Internet is based on Transmission Control Protocol(TCP)/Internet Protocol(IP)network where clients and servers interact with each other with the help of IP in a pre-defined environment.Internet fetches data from a fixed location.Data redundancy,mobility,and location dependency are the main issues of the IP network paradigm.All these factors result in poor performance of wireless ad hoc networks.The main disadvantage of IP is that,it does not provide in-network caching.Therefore,there is a need to move towards a new network that overcomes these limitations.Named Data Network(NDN)is a network that overcomes these limitations.NDN is a project of Information-centric Network(ICN).NDN provides in-network caching which helps in fast response to user queries.Implementing NDN in wireless ad hoc network provides many benefits such as caching,mobility,scalability,security,and privacy.By considering the certainty,in this survey paper,we present a comprehensive survey on Caching Strategies in NDN-based Wireless AdHocNetwork.Various cachingmechanism-based results are also described.In the last,we also shed light on the challenges and future directions of this promising field to provide a clear understanding of what caching-related problems exist in NDN-based wireless ad hoc networks.
基金partly funded by Natural Science Foundation of China(No.61971102 and 62132004)Sichuan Science and Technology Program(No.22QYCX0168)the Municipal Government of Quzhou(Grant No.2021D003)。
文摘Terminal devices deployed in outdoor environments are facing a thorny problem of power supply.Data and energy integrated network(DEIN)is a promising technology to solve the problem,which simultaneously transfers data and energy through radio frequency signals.State-of-the-art researches mostly focus on theoretical aspects.By contrast,we provide a complete design and implementation of a fully functioning DEIN system with the support of an unmanned aerial vehicle(UAV).The UAV can be dispatched to areas of interest to remotely recharge batteryless terminals,while collecting essential information from them.Then,the UAV uploads the information to remote base stations.Our system verifies the feasibility of the DEIN in practical applications.
基金This work was supported by the Serbian Ministry of Science and Education(project TR-32022)by companies Telekom Srbija and Informatika.
文摘Data center networks may comprise tens or hundreds of thousands of nodes,and,naturally,suffer from frequent software and hardware failures as well as link congestions.Packets are routed along the shortest paths with sufficient resources to facilitate efficient network utilization and minimize delays.In such dynamic networks,links frequently fail or get congested,making the recalculation of the shortest paths a computationally intensive problem.Various routing protocols were proposed to overcome this problem by focusing on network utilization rather than speed.Surprisingly,the design of fast shortest-path algorithms for data centers was largely neglected,though they are universal components of routing protocols.Moreover,parallelization techniques were mostly deployed for random network topologies,and not for regular topologies that are often found in data centers.The aim of this paper is to improve scalability and reduce the time required for the shortest-path calculation in data center networks by parallelization on general-purpose hardware.We propose a novel algorithm that parallelizes edge relaxations as a faster and more scalable solution for popular data center topologies.
基金This work was supported by the Hainan Provincial Natural Science Foundation of China(620RC560,2019RC096,620RC562)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)+2 种基金the National Natural Science Foundation of China(62162021,82160345,61802092)the key research and development program of Hainan province(ZDYF2020199,ZDYF2021GXJS017)the key science and technology plan project of Haikou(2011-016).
文摘As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.