Smart containers have been extensively applied in the maritime industry by embracing the Internet of Things to realize container status monitoring and data offloading without human intervention.However, the offloading...Smart containers have been extensively applied in the maritime industry by embracing the Internet of Things to realize container status monitoring and data offloading without human intervention.However, the offloading rate and delay in the offshore region are limited by the coverage of the onshore base station(BS). In this paper, we investigate the unmanned aerial vehicle(UAV)-assisted data offloading for smart containers in offshore maritime communications where the UAV is as a relay node between smart containers and onshore BS. We first consider the mobility of container vessel in the offshore region and establish a UAV-assisted data offloading model. Based on this model, a data offloading algorithm is proposed to reduce the average offloading delay under data-size requirements and available energy constraints of smart containers. Specifically, the convex-concave procedure is used to update time-slot assignment,offloading approach selection, and power allocation in an iterative manner. Simulation results show that the proposed algorithm can efficiently reduce average offloading delay and increase offloading success ratio.Moreover, it is shown that the UAV relay cannot always bring the performance gain on offloading delay especially in the close-to-shore area, which could give an insight on the deployment of UAV relay in offshore communications.展开更多
Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction o...Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction of deep learning(DL)and hardware technologies paves amethod in detecting the current traffic status,data offloading,and cyberattacks in MEC.This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC(AIMDO-SMEC)systems.The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks(SNN)to determine the traffic status in the MEC system.Also,an adaptive sampling cross entropy(ASCE)technique is utilized for data offloading in MEC systems.Moreover,the modified salp swarm algorithm(MSSA)with extreme gradient boosting(XGBoost)technique was implemented to identification and classification of cyberattack that exist in the MEC systems.For examining the enhanced outcomes of the AIMDO-SMEC technique,a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDOSMEC technique with the minimal completion time of tasks(CTT)of 0.680.展开更多
The explosive growth of mobile data demand is becoming an increasing burden on current cellular network.To address this issue,we propose a solution of opportunistic data offloading for alleviating overloaded cellular ...The explosive growth of mobile data demand is becoming an increasing burden on current cellular network.To address this issue,we propose a solution of opportunistic data offloading for alleviating overloaded cellular traffic.The principle behind it is to select a few important users as seeds for data sharing.The three critical steps are detailed as follows.We first explore individual interests of users by the construction of user profiles,on which an interest graph is built by Gaussian graphical modeling.We then apply the extreme value theory to threshold the encounter duration of user pairs.So,a contact graph is generated to indicate the social relationships of users.Moreover,a contact-interest graph is developed on the basis of the social ties and individual interests of users.Corresponding on different graphs,three strategies are finally proposed for seed selection in an aim to maximize overloaded cellular data.We evaluate the performance of our algorithms by the trace data of real-word mobility.It demonstrates the effectiveness of the strategy of taking social relationships and individual interests into account.展开更多
The rapid growth of 3G/4G enabled devices such as smartphones and tablets in large numbers has created increased demand for mobile data services. Wi-Fi offloading helps satisfy the requirements of data-rich applicatio...The rapid growth of 3G/4G enabled devices such as smartphones and tablets in large numbers has created increased demand for mobile data services. Wi-Fi offloading helps satisfy the requirements of data-rich applications and terminals with improved multi- media. Wi-Fi is an essential approach to alleviating mobile data traffic load on a cellular network because it provides extra capacity and improves overall performance. In this paper, we propose an integrated LTE/Wi-Fi architecture with software-defined networking (SDN) abstraction in mobile baekhaul and enhanced components that facilitate the move towards next-generation 5G mo- bile networks. Our proposed architecture enables programmable offloading policies that take into account real-time network conditions as well as the status of devices and applications. This mechanism improves overall network performance by deriving real- time policies and steering traffic between cellular and Wi-Fi networks more efficiently.展开更多
Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)services.After the emerg...Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)services.After the emergence of IoT-based services,the industry of internet-based devices has grown.The number of these devices has raised from millions to billions,and it is expected to increase further in the near future.Thus,additional challenges will be added to the traditional centralized cloud-based architecture as it will not be able to handle that growth and to support all connected devices in real-time without affecting the user experience.Conventional data aggregation models for Fog enabled IoT environ-ments possess high computational complexity and communication cost.There-fore,in order to resolve the issues and improve the lifetime of the network,this study develops an effective hierarchical data aggregation with chaotic barnacles mating optimizer(HDAG-CBMO)technique.The HDAG-CBMO technique derives afitness function from many relational matrices,like residual energy,average distance to neighbors,and centroid degree of target area.Besides,a chaotic theory based population initialization technique is derived for the optimal initial position of barnacles.Moreover,a learning based data offloading method has been developed for reducing the response time to IoT user requests.A wide range of simulation analyses demonstrated that the HDAG-CBMO technique has resulted in balanced energy utilization and prolonged lifetime of the Fog assisted IoT networks.展开更多
As people are accustomed to getting information in the vehicles,mobile data offloading through Vehicular Ad Hoc Networks(VANETs)becomes prevalent nowadays.However,the impacts caused by the vehicle mobility(such as the...As people are accustomed to getting information in the vehicles,mobile data offloading through Vehicular Ad Hoc Networks(VANETs)becomes prevalent nowadays.However,the impacts caused by the vehicle mobility(such as the relative speed and direction between vehicles)have great effects on mobile data offloading.In this paper,a V2V online data offloading method is proposed based on vehicle mobility.In this mechanism,the network service process was divided into continuous and equal-sized time slots.Data were transmitted in a multicast manner for the sake of fairness.The data offloading problem was formalized to maximize the overall satisfaction of the vehicle users.In each time slot,a genetic algorithm was used to solve the maximizing problem to obtain a mobile data offloading strategy.And then,the performance of the algorithm was enhanced by improving the algorithm.The experiment results show that vehicle mobility has a great effect on mobile data offloading,and the mobile data offloading method proposed in the paper is effective.展开更多
In intelligent transportation system(ITS), the interworking of vehicular networks(VN) and cellular networks(CN) is proposed to provide high-data-rate services to vehicles. As the network access quality for CN and VN i...In intelligent transportation system(ITS), the interworking of vehicular networks(VN) and cellular networks(CN) is proposed to provide high-data-rate services to vehicles. As the network access quality for CN and VN is location related, mobile data offloading(MDO), which dynamically selects access networks for vehicles, should be considered with vehicle route planning to further improve the wireless data throughput of individual vehicles and to enhance the performance of the entire ITS. In this paper, we investigate joint MDO and route selection for an individual vehicle in a metropolitan scenario. We aim to improve the throughput of the target vehicle while guaranteeing its transportation efficiency requirements in terms of traveling time and distance. To achieve this objective, we first formulate the joint route and access network selection problem as a semi-Markov decision process(SMDP). Then we propose an optimal algorithm to calculate its optimal policy. To further reduce the computation complexity, we derive a suboptimal algorithm which reduces the action space. Simulation results demonstrate that the proposed optimal algorithm significantly outperforms the existing work in total throughput and the late arrival ratio.Moreover, the heuristic algorithm is able to substantially reduce the computation time with only slight performance degradation.展开更多
基金supported in part by National Key Research and Development Program of China under Grant 2019YFE0111600in part by National Natural Science Foundation of China under Grants 62101089, 62002042, 61971083, and 51939001+4 种基金in part by China Postdoctoral Science Foundation under Grants 2021M700655 and 2021M690022in part by Cooperative Scientific Research Project, Chunhui Program of Ministry of Education, P. R. Chinain part by LiaoNing Revitalization Talents Program under Grant XLYC2002078in part by Dalian Science and Technology Innovation Fund under Grant 2019J11CY015in part by the Fundamental Research Funds for Central Universities under Grants 3132021237 and 3132021223。
文摘Smart containers have been extensively applied in the maritime industry by embracing the Internet of Things to realize container status monitoring and data offloading without human intervention.However, the offloading rate and delay in the offshore region are limited by the coverage of the onshore base station(BS). In this paper, we investigate the unmanned aerial vehicle(UAV)-assisted data offloading for smart containers in offshore maritime communications where the UAV is as a relay node between smart containers and onshore BS. We first consider the mobility of container vessel in the offshore region and establish a UAV-assisted data offloading model. Based on this model, a data offloading algorithm is proposed to reduce the average offloading delay under data-size requirements and available energy constraints of smart containers. Specifically, the convex-concave procedure is used to update time-slot assignment,offloading approach selection, and power allocation in an iterative manner. Simulation results show that the proposed algorithm can efficiently reduce average offloading delay and increase offloading success ratio.Moreover, it is shown that the UAV relay cannot always bring the performance gain on offloading delay especially in the close-to-shore area, which could give an insight on the deployment of UAV relay in offshore communications.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/209/42)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R77),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Mobile edge computing(MEC)provides effective cloud services and functionality at the edge device,to improve the quality of service(QoS)of end users by offloading the high computation tasks.Currently,the introduction of deep learning(DL)and hardware technologies paves amethod in detecting the current traffic status,data offloading,and cyberattacks in MEC.This study introduces an artificial intelligence with metaheuristic based data offloading technique for Secure MEC(AIMDO-SMEC)systems.The proposed AIMDO-SMEC technique incorporates an effective traffic prediction module using Siamese Neural Networks(SNN)to determine the traffic status in the MEC system.Also,an adaptive sampling cross entropy(ASCE)technique is utilized for data offloading in MEC systems.Moreover,the modified salp swarm algorithm(MSSA)with extreme gradient boosting(XGBoost)technique was implemented to identification and classification of cyberattack that exist in the MEC systems.For examining the enhanced outcomes of the AIMDO-SMEC technique,a comprehensive experimental analysis is carried out and the results demonstrated the enhanced outcomes of the AIMDOSMEC technique with the minimal completion time of tasks(CTT)of 0.680.
基金This work was supported in part by National Natural Science Foundation of China under Grant No.61502261,61572457,61379132Key Research and Development Plan Project of Shandong Province under Grant No.2016GGX101032+1 种基金Science,Technology Plan Project for Colleges and Universities of Shandong Province under Grant No.J14LN85the Natural Science Foundation of Shandong Province under Grant No.ZR2017PF013.
文摘The explosive growth of mobile data demand is becoming an increasing burden on current cellular network.To address this issue,we propose a solution of opportunistic data offloading for alleviating overloaded cellular traffic.The principle behind it is to select a few important users as seeds for data sharing.The three critical steps are detailed as follows.We first explore individual interests of users by the construction of user profiles,on which an interest graph is built by Gaussian graphical modeling.We then apply the extreme value theory to threshold the encounter duration of user pairs.So,a contact graph is generated to indicate the social relationships of users.Moreover,a contact-interest graph is developed on the basis of the social ties and individual interests of users.Corresponding on different graphs,three strategies are finally proposed for seed selection in an aim to maximize overloaded cellular data.We evaluate the performance of our algorithms by the trace data of real-word mobility.It demonstrates the effectiveness of the strategy of taking social relationships and individual interests into account.
文摘The rapid growth of 3G/4G enabled devices such as smartphones and tablets in large numbers has created increased demand for mobile data services. Wi-Fi offloading helps satisfy the requirements of data-rich applications and terminals with improved multi- media. Wi-Fi is an essential approach to alleviating mobile data traffic load on a cellular network because it provides extra capacity and improves overall performance. In this paper, we propose an integrated LTE/Wi-Fi architecture with software-defined networking (SDN) abstraction in mobile baekhaul and enhanced components that facilitate the move towards next-generation 5G mo- bile networks. Our proposed architecture enables programmable offloading policies that take into account real-time network conditions as well as the status of devices and applications. This mechanism improves overall network performance by deriving real- time policies and steering traffic between cellular and Wi-Fi networks more efficiently.
文摘Fog computing is a promising technology that has been emerged to handle the growth of smart devices as well as the popularity of latency-sensitive and location-awareness Internet of Things(IoT)services.After the emergence of IoT-based services,the industry of internet-based devices has grown.The number of these devices has raised from millions to billions,and it is expected to increase further in the near future.Thus,additional challenges will be added to the traditional centralized cloud-based architecture as it will not be able to handle that growth and to support all connected devices in real-time without affecting the user experience.Conventional data aggregation models for Fog enabled IoT environ-ments possess high computational complexity and communication cost.There-fore,in order to resolve the issues and improve the lifetime of the network,this study develops an effective hierarchical data aggregation with chaotic barnacles mating optimizer(HDAG-CBMO)technique.The HDAG-CBMO technique derives afitness function from many relational matrices,like residual energy,average distance to neighbors,and centroid degree of target area.Besides,a chaotic theory based population initialization technique is derived for the optimal initial position of barnacles.Moreover,a learning based data offloading method has been developed for reducing the response time to IoT user requests.A wide range of simulation analyses demonstrated that the HDAG-CBMO technique has resulted in balanced energy utilization and prolonged lifetime of the Fog assisted IoT networks.
基金the System Architecture Project(No.61400040503)the Natural Science Foundation of China(No.61872104)+2 种基金the Natural Science Foundation of Heilongjiang Province in China(No.F2016028)the Fundamental Research Fund for the Central Universities in ChinaTianjin Key Laboratory of Advanced Networking(TANK)in College of Intelligence and Computing of Tianjin University.
文摘As people are accustomed to getting information in the vehicles,mobile data offloading through Vehicular Ad Hoc Networks(VANETs)becomes prevalent nowadays.However,the impacts caused by the vehicle mobility(such as the relative speed and direction between vehicles)have great effects on mobile data offloading.In this paper,a V2V online data offloading method is proposed based on vehicle mobility.In this mechanism,the network service process was divided into continuous and equal-sized time slots.Data were transmitted in a multicast manner for the sake of fairness.The data offloading problem was formalized to maximize the overall satisfaction of the vehicle users.In each time slot,a genetic algorithm was used to solve the maximizing problem to obtain a mobile data offloading strategy.And then,the performance of the algorithm was enhanced by improving the algorithm.The experiment results show that vehicle mobility has a great effect on mobile data offloading,and the mobile data offloading method proposed in the paper is effective.
基金the National Natural Science Foundation of China under Grants 61631005 and U1801261the National Key R&D Program of China under Grant 2018YFB1801105+3 种基金the Central Universities under Grant ZYGX2019Z022the Key Areas of Research and Development Program of Guangdong Province, China, under Grant 2018B010114001the 111 Project under Grant B20064the China Postdoctoral Science Foundation under Grant No. 2018M631075
文摘In intelligent transportation system(ITS), the interworking of vehicular networks(VN) and cellular networks(CN) is proposed to provide high-data-rate services to vehicles. As the network access quality for CN and VN is location related, mobile data offloading(MDO), which dynamically selects access networks for vehicles, should be considered with vehicle route planning to further improve the wireless data throughput of individual vehicles and to enhance the performance of the entire ITS. In this paper, we investigate joint MDO and route selection for an individual vehicle in a metropolitan scenario. We aim to improve the throughput of the target vehicle while guaranteeing its transportation efficiency requirements in terms of traveling time and distance. To achieve this objective, we first formulate the joint route and access network selection problem as a semi-Markov decision process(SMDP). Then we propose an optimal algorithm to calculate its optimal policy. To further reduce the computation complexity, we derive a suboptimal algorithm which reduces the action space. Simulation results demonstrate that the proposed optimal algorithm significantly outperforms the existing work in total throughput and the late arrival ratio.Moreover, the heuristic algorithm is able to substantially reduce the computation time with only slight performance degradation.