In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the trainin...In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.展开更多
Remote data monitoring system which adopts virtual instrument usually applies data sharing, acquisition and remote transmission technology via internet. It is able to finish concurrent data acquisition and processing ...Remote data monitoring system which adopts virtual instrument usually applies data sharing, acquisition and remote transmission technology via internet. It is able to finish concurrent data acquisition and processing for multi-user and multi-task and also build a personalized virtual testing environment for more people but with fewer instruments. In this paper, we' 11 elaborate on the design and implementation of information sharing platform through a typical example of how to build multi-user concurrent virtual testing environment based on the virtnal software LabVIEW.展开更多
基金National Key Research and Development Program of China(2021ZD0113704).
文摘In this paper,a variety of classical convolutional neural networks are trained on two different datasets using transfer learning method.We demonstrated that the training dataset has a significant impact on the training results,in addition to the optimization achieved through the model structure.However,the lack of open-source agricultural data,combined with the absence of a comprehensive open-source data sharing platform,remains a substantial obstacle.This issue is closely related to the difficulty and high cost of obtaining high-quality agricultural data,the low level of education of most employees,underdeveloped distributed training systems and unsecured data security.To address these challenges,this paper proposes a novel idea of constructing an agricultural data sharing platform based on a federated learning(FL)framework,aiming to overcome the deficiency of high-quality data in agricultural field training.
文摘Remote data monitoring system which adopts virtual instrument usually applies data sharing, acquisition and remote transmission technology via internet. It is able to finish concurrent data acquisition and processing for multi-user and multi-task and also build a personalized virtual testing environment for more people but with fewer instruments. In this paper, we' 11 elaborate on the design and implementation of information sharing platform through a typical example of how to build multi-user concurrent virtual testing environment based on the virtnal software LabVIEW.