期刊文献+
共找到419篇文章
< 1 2 21 >
每页显示 20 50 100
Application of a Bayesian method to data-poor stock assessment by using Indian Ocean albacore (Thunnus alalunga) stock assessment as an example 被引量:14
1
作者 GUAN Wenjiang TANG Lin +2 位作者 ZHU Jiangfeng TIAN Siquan XU Liuxiong 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2016年第2期117-125,共9页
It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in dat... It is widely recognized that assessments of the status of data-poor fish stocks are challenging and that Bayesian analysis is one of the methods which can be used to improve the reliability of stock assessments in data-poor situations through borrowing strength from prior information deduced from species with good-quality data or other known information. Because there is considerable uncertainty remaining in the stock assessment of albacore tuna(Thunnus alalunga) in the Indian Ocean due to the limited and low-quality data, we investigate the advantages of a Bayesian method in data-poor stock assessment by using Indian Ocean albacore stock assessment as an example. Eight Bayesian biomass dynamics models with different prior assumptions and catch data series were developed to assess the stock. The results show(1) the rationality of choice of catch data series and assumption of parameters could be enhanced by analyzing the posterior distribution of the parameters;(2) the reliability of the stock assessment could be improved by using demographic methods to construct a prior for the intrinsic rate of increase(r). Because we can make use of more information to improve the rationality of parameter estimation and the reliability of the stock assessment compared with traditional statistical methods by incorporating any available knowledge into the informative priors and analyzing the posterior distribution based on Bayesian framework in data-poor situations, we suggest that the Bayesian method should be an alternative method to be applied in data-poor species stock assessment, such as Indian Ocean albacore. 展开更多
关键词 data-poor stock assessment Bayesian method catch data series demographic method Indian Ocean Thunnus alalunga
下载PDF
DAViS:a unified solution for data collection, analyzation,and visualization in real‑time stock market prediction
2
作者 Suppawong Tuarob Poom Wettayakorn +4 位作者 Ponpat Phetchai Siripong Traivijitkhun Sunghoon Lim Thanapon Noraset Tipajin Thaipisutikul 《Financial Innovation》 2021年第1期1232-1263,共32页
The explosion of online information with the recent advent of digital technology in information processing,information storing,information sharing,natural language processing,and text mining techniques has enabled sto... The explosion of online information with the recent advent of digital technology in information processing,information storing,information sharing,natural language processing,and text mining techniques has enabled stock investors to uncover market movement and volatility from heterogeneous content.For example,a typical stock market investor reads the news,explores market sentiment,and analyzes technical details in order to make a sound decision prior to purchasing or selling a particular company’s stock.However,capturing a dynamic stock market trend is challenging owing to high fluctuation and the non-stationary nature of the stock market.Although existing studies have attempted to enhance stock prediction,few have provided a complete decision-support system for investors to retrieve real-time data from multiple sources and extract insightful information for sound decision-making.To address the above challenge,we propose a unified solution for data collection,analysis,and visualization in real-time stock market prediction to retrieve and process relevant financial data from news articles,social media,and company technical information.We aim to provide not only useful information for stock investors but also meaningful visualization that enables investors to effectively interpret storyline events affecting stock prices.Specifically,we utilize an ensemble stacking of diversified machine-learning-based estimators and innovative contextual feature engineering to predict the next day’s stock prices.Experiment results show that our proposed stock forecasting method outperforms a traditional baseline with an average mean absolute percentage error of 0.93.Our findings confirm that leveraging an ensemble scheme of machine learning methods with contextual information improves stock prediction performance.Finally,our study could be further extended to a wide variety of innovative financial applications that seek to incorporate external insight from contextual information such as large-scale online news articles and social media data. 展开更多
关键词 Investment support system stock data visualization Time series analysis Ensemble machine learning Text mining
下载PDF
On Visualization Analysis of Stock Data
3
作者 Yue Cai Zeying Song +6 位作者 Guang Sun Jing Wang Ziyi Guo Yi Zuo Xiaoping Fan Jianjun Zhang Lin Lang 《Journal on Big Data》 2019年第3期135-144,共10页
Big data technology is changing with each passing day,generating massive amounts of data every day.These data have large capacity,many types,fast growth,and valuable features.The same is true for the stock investment ... Big data technology is changing with each passing day,generating massive amounts of data every day.These data have large capacity,many types,fast growth,and valuable features.The same is true for the stock investment market.The growth of the amount of stock data generated every day is difficult to predict.The price trend in the stock market is uncertain,and the valuable information hidden in the stock data is difficult to detect.For example,the price trend of stocks,profit trends,how to make a reasonable speculation on the price trend of stocks and profit trends is a major problem that needs to be solved at this stage.This article uses the Python language to visually analyze,calculate,and predict each stock.Realize the integration and calculation of stock data to help people find out the valuable information hidden in stocks.The method proposed in this paper has been tested and proved to be feasible.It can reasonably extract,analyze and calculate the stock data,and predict the stock price trend to a certain extent. 展开更多
关键词 data visualization stock data data analysis
下载PDF
Using Data Mining with Time Series Data in Short-Term Stocks Prediction: A Literature Review 被引量:2
4
作者 José Manuel Azevedo Rui Almeida Pedro Almeida 《International Journal of Intelligence Science》 2012年第4期176-180,共5页
Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series da... Data Mining (DM) methods are being increasingly used in prediction with time series data, in addition to traditional statistical approaches. This paper presents a literature review of the use of DM with time series data, focusing on shorttime stocks prediction. This is an area that has been attracting a great deal of attention from researchers in the field. The main contribution of this paper is to provide an outline of the use of DM with time series data, using mainly examples related with short-term stocks prediction. This is important to a better understanding of the field. Some of the main trends and open issues will also be introduced. 展开更多
关键词 data Mining Time Series FUNDAMENTAL data data Frequency Application DOMAIN SHORT-TERM stocks PREDICTION
下载PDF
Forest aboveground biomass estimates in a tropical rainforest in Madagascar: new insights from the use of wood specific gravity data 被引量:2
5
作者 Tahiana Ramananantoandro Herimanitra P.Rafidimanantsoa Miora F.Ramanakoto 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第1期47-55,共9页
To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on car... To generate carbon credits under the Reducing Emissions from Deforestation and forest Degradation program(REDD+), accurate estimates of forest carbon stocks are needed. Carbon accounting efforts have focused on carbon stocks in aboveground biomass(AGB).Although wood specific gravity(WSG) is known to be an important variable in AGB estimates, there is currently a lack of data on WSG for Malagasy tree species. This study aimed to determine whether estimates of carbon stocks calculated from literature-based WSG values differed from those based on WSG values measured on wood core samples. Carbon stocks in forest biomass were assessed using two WSG data sets:(i) values measured from 303 wood core samples extracted in the study area,(ii) values derived from international databases. Results suggested that there is difference between the field and literaturebased WSG at the 0.05 level. The latter data set was on average 16 % higher than the former. However, carbon stocks calculated from the two data sets did not differ significantly at the 0.05 level. Such findings could be attributed to the form of the allometric equation used which gives more weight to tree diameter and tree height than to WSG. The choice of dataset should depend on the level of accuracy(Tier II or III) desired by REDD+. As higher levels of accuracy are rewarded by higher prices, speciesspecific WSG data would be highly desirable. 展开更多
关键词 Biomass estimates Carbon stocks data quality Madagascar REDD+ Wood specific gravity
下载PDF
Stock Price Forecasting: An Echo State Network Approach
6
作者 Guang Sun Jingjing Lin +6 位作者 Chen Yang Xiangyang Yin Ziyu Li Peng Guo Junqi Sun Xiaoping Fan Bin Pan 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期509-520,共12页
Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro... Forecasting stock prices using deep learning models suffers from pro-blems such as low accuracy,slow convergence,and complex network structures.This study developed an echo state network(ESN)model to mitigate such pro-blems.We compared our ESN with a long short-term memory(LSTM)network by forecasting the stock data of Kweichow Moutai,a leading enterprise in China’s liquor industry.By analyzing data for 120,240,and 300 days,we generated fore-cast data for the next 40,80,and 100 days,respectively,using both ESN and LSTM.In terms of accuracy,ESN had the unique advantage of capturing non-linear data.Mean absolute error(MAE)was used to present the accuracy results.The MAEs of the data forecast by ESN were 0.024,0.024,and 0.025,which were,respectively,0.065,0.007,and 0.009 less than those of LSTM.In terms of con-vergence,ESN has a reservoir state-space structure,which makes it perform faster than other models.Root-mean-square error(RMSE)was used to present the con-vergence time.In our experiment,the RMSEs of ESN were 0.22,0.27,and 0.26,which were,respectively,0.08,0.01,and 0.12 less than those of LSTM.In terms of network structure,ESN consists only of input,reservoir,and output spaces,making it a much simpler model than the others.The proposed ESN was found to be an effective model that,compared to others,converges faster,forecasts more accurately,and builds time-series analyses more easily. 展开更多
关键词 stock data forecast echo state network deep learning
下载PDF
Stock Trading with Genetic AlgorithmmSwitching from One Stock to Another
7
作者 Tomio Kurokawa 《通讯和计算机(中英文版)》 2011年第2期143-149,共7页
关键词 股票交易 遗传 买卖 训练数据 样本数据 学习系统 交易模式 股票数据
下载PDF
时序模型ARIMA在数据分析中的应用 被引量:3
8
作者 李玲玲 辛浩 《福建电脑》 2024年第4期25-29,共5页
时间序列是进行趋势分析的方法之一。随着大数据时代的到来,经济趋势、企业经营、市场预测和天气预测等常常需要进行预测和分析。本文对某知名化妆品公司2010年至2018年间的2122条股票数据,采用ARIMA模型进行趋势分析,预测未来的发展趋... 时间序列是进行趋势分析的方法之一。随着大数据时代的到来,经济趋势、企业经营、市场预测和天气预测等常常需要进行预测和分析。本文对某知名化妆品公司2010年至2018年间的2122条股票数据,采用ARIMA模型进行趋势分析,预测未来的发展趋势。通过模型的拟合与效果考核,所得到的结果说明了应用ARIMA模型对股票进行趋势分析时,可以取得较好的预测效果。 展开更多
关键词 时间序列 股票数据 预测模型 自回归积分滑动平均模型
下载PDF
中国数据资本存量测算:基于上市公司数据
9
作者 王宏伟 董康 李平 《中国软科学》 CSSCI CSCD 北大核心 2024年第11期113-123,共11页
数据要素在经济生活中发挥着日益重要的作用,但如何衡量数据资产投资以及测算数据资本存量的相关研究还比较薄弱。运用我国沪深市场所有上市公司数据,根据数据资本特点对永续盘存法的重要参数进行调整,并采用几何、双曲线、直线年龄—... 数据要素在经济生活中发挥着日益重要的作用,但如何衡量数据资产投资以及测算数据资本存量的相关研究还比较薄弱。运用我国沪深市场所有上市公司数据,根据数据资本特点对永续盘存法的重要参数进行调整,并采用几何、双曲线、直线年龄—效率函数,结合不同的退出模式估算2010—2020年我国各行业及总体的数据资本存量。研究发现:第一,几何路径下我国数据资本存量从2010年的0.95万亿元增长到2020年的6.11万亿元,年均增长率为20.46%,而在3种路径下数据资本存量数值存在一定差异,但始终保持较快上升趋势且变化趋势基本相同。从内部结构看,信息传输、计算机服务和软件业与制造业两个行业中数据资本存量高于其他行业;第二,国家出台支持数据要素发展的重大政策对我国数据资本存量增加具有明显的促进作用;第三,与发达国家相比,我国数据资本存量基础比较薄弱,但上升速度较快。 展开更多
关键词 数据资产投资 永续盘存法 年龄—效率函数 数据资本存量
下载PDF
投资者情绪是否会影响股票定价效率?——来自股票社区的文本证据 被引量:1
10
作者 尹海员 王晓晓 《北京联合大学学报(人文社会科学版)》 CSSCI 2024年第3期96-111,共16页
股票定价效率是衡量股票市场有效性的重要指标,更高的定价效率有利于促进资本市场资源的合理配置,更好地服务实体经济高质量发展。本文挖掘东方财富的投资者社区的文本发帖信息,利用机器学习方法分析文本情绪状态,构建投资者情绪指标并... 股票定价效率是衡量股票市场有效性的重要指标,更高的定价效率有利于促进资本市场资源的合理配置,更好地服务实体经济高质量发展。本文挖掘东方财富的投资者社区的文本发帖信息,利用机器学习方法分析文本情绪状态,构建投资者情绪指标并分析其对股票定价效率的影响。研究表明,投资者情绪与股票定价效率之间存在显著正相关关系,也即乐观的投资者情绪会带动股票定价效率的提升。这种影响效应是通过乐观情绪降低了信息不对称程度,进而提升了股价信息含量,并与定价效率的机制路径产生作用。进一步看,随着卖空限制的降低,股票定价效率对情绪的敏感程度会增大;良好的信息环境会降低情绪对股票定价效率的影响。研究结论为从个体投资者情绪视角透视我国股票市场运行效率以及网络媒体信息监管的必要性提供了证据。 展开更多
关键词 投资者情绪 股票定价效率 数据挖掘 机器学习
下载PDF
Model of Risk Forewarn and Investment Decision in Stock Markets and Its Realization
11
作者 邹辉文 汤兵勇 +1 位作者 王丽萍 徐光伟 《Journal of Donghua University(English Edition)》 EI CAS 2004年第6期134-141,共8页
Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision m... Based on the discussion of characteristic and mechanism of the stock prices volatility in Chinese emerging stock markets, this research designs an index system for risk forewarn, and builds up an investment decision model based on the forewarn of the market risk signal. Then, on probing into the structure and function of the realization of the model, the paper presents the method of data interface. 展开更多
关键词 stock market RISK forewarn system structure data INTERFACE
下载PDF
序列稀疏自回归方法及其在美股做空数据分析上的应用
12
作者 刘静 余琴 +1 位作者 吴捷 李阳 《财贸研究》 CSSCI 北大核心 2024年第1期60-70,共11页
采用序列稀疏回归的思路来处理向量自回归模型,并设计适用于大规模时间序列数据分析的序列稀疏自回归方法。研究表明:从因子角度刻画向量自回归模型可以有效地将稀疏矩阵估计问题分解成稀疏奇异向量的估计问题,从而极大地提高了计算效... 采用序列稀疏回归的思路来处理向量自回归模型,并设计适用于大规模时间序列数据分析的序列稀疏自回归方法。研究表明:从因子角度刻画向量自回归模型可以有效地将稀疏矩阵估计问题分解成稀疏奇异向量的估计问题,从而极大地提高了计算效率。以1523家美股上市公司1973年1月—2014年12月的做空数据为例,利用此方法探索公司之间的大规模做空关联网络。研究发现:此方法可以有效地恢复股票做空份额(即某一公司的空头股份数量)与股票收益率之间隐藏的关联网络,对于股票风险溢价研究具有一定启发意义。 展开更多
关键词 向量自回归模型 关联性网络 稀疏建模 股票做空份额 大数据分析
下载PDF
结构化最大间隔双支持向量机在股票预测中的应用 被引量:1
13
作者 林明松 杨晓梅 杨志霞 《计算机工程与应用》 CSCD 北大核心 2024年第11期346-355,共10页
股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分... 股票价格受政策、宏观经济以及公司经营状况等多方因素的影响,且各因素之间存在较高的相关性,因此股票数据存在的高噪声、非平稳等特性使得股票预测充满困难。为了减少数据中存在的噪声对股价预测准确性的影响,基于马氏距离的类间隔可分性,提出了结构化最大间隔双支持向量机,其分别针对正类样本和负类样本,寻找两个非平行的超平面,使每一类样本离本类样本的欧式距离尽可能小,同时离异类超平面的马氏距离尽可能大。8组基准数据集的实验结果表明,该方法在含噪声数据的分类问题上具有稳定的准确率,从而提升了模型的预测性能和抗噪能力。同时将其应用到股票涨跌趋势预测中,通过对上证综指、上证A指、上证380指数以及中国平安等14只股票实证分析的结果表明,相较于其他对比模型,结构化最大间隔双支持向量机表现出了较好的预测结果,具有一定的实用价值。 展开更多
关键词 分类问题 双支持向量机 数据结构 马氏距离 股票预测
下载PDF
存量地下空间更新价值评估体系研究
14
作者 胡斌 李雨姗 张明子 《地下空间与工程学报》 CSCD 北大核心 2024年第1期17-22,41,共7页
存量地下空间在补充地面空间资源、完善城市设施方面具有巨大的潜力,但在发展过程中凸显出功能集聚但空间匮乏、品质参差且风貌缺失、功能错位且动迁成本高、停车供给不足又缺乏联动等众多问题。因其自身特点复杂且受到的限制较多,如对... 存量地下空间在补充地面空间资源、完善城市设施方面具有巨大的潜力,但在发展过程中凸显出功能集聚但空间匮乏、品质参差且风貌缺失、功能错位且动迁成本高、停车供给不足又缺乏联动等众多问题。因其自身特点复杂且受到的限制较多,如对于公众开放性不足,涉及多个发展目标,影响方案决策的因素较多,以及配套管理机制滞后等,加之缺乏高效的价值评估方法,导致在对其进行更新再利用时面临利用方式的单一和利用效率的不足。本文从全要素研究分析的角度出发,以现状质量、更新需求、成本投入和可获效益4个需求准则进行价值评估指标的选取,经过对多种评估方法的对比,选用特征价格法用于城市存量地下空间价值评估,以存量地下空间更新的微观形成机制估算潜在价值,采用定性分析与定量评价相结合的方式,在重要因素与更新利用之间建立回归模型,选择拟合度较好的半对数模型,并提出借助多元数据,提高评估的准确性,拟合存量地下空间的更新价值分布,以期为存量地下空间的高效、高品质更新利用提供参考。 展开更多
关键词 地下空间 存量更新 价值评估 指标选取 多元数据
下载PDF
基于长度数据的南海北部深水金线鱼资源评估
15
作者 刘子凯 许友伟 +3 位作者 蔡研聪 孙铭帅 张魁 陈作志 《南方水产科学》 CAS CSCD 北大核心 2024年第4期24-33,共10页
深水金线鱼(Nemipterus bathybius)是南海北部重要的底层经济鱼类,但近年来其资源呈现过度开发的态势。利用2014—2019年在南海北部底拖网调查中采集的3059尾深水金线鱼生物学数据,使用基于长度的贝叶斯生物量评估(Length-based Bayesia... 深水金线鱼(Nemipterus bathybius)是南海北部重要的底层经济鱼类,但近年来其资源呈现过度开发的态势。利用2014—2019年在南海北部底拖网调查中采集的3059尾深水金线鱼生物学数据,使用基于长度的贝叶斯生物量评估(Length-based Bayesian biomass estimation method,LBB)和基于长度的繁殖潜力比(Length-based spawning potential ratio,LBSPR)2种数据缺乏条件下的资源评估模型,对其资源状况进行了评估,为其种群科学管理和可持续利用提供技术支撑。结果表明,2014—2019年南海北部深水金线鱼的渐近体长(Linf)、相对自然死亡率(M/K)和50%性成熟体长(L50)分别为23.7 cm、2.33和11.76 cm。LBB模型评估结果显示,其种群资源量水平(B/BMSY)、50%渔获长度与最适可捕长度的比值(Lc/Lc_opt)分别为0.89、0.85,表明深水金线鱼处于轻度过度开发状态和生长型过度捕捞状态。LBSPR模型评估结果显示繁殖潜力比(SPR)为0.19,说明深水金线鱼正处于过度捕捞状态。通过先验参数的不确定性分析,发现LBB和LBSPR对参数Linf的设置极为敏感,对参数M/K的设置比较敏感,因此在使用LBB和LBSPR模型进行评估时应谨慎设置以上2种参数。 展开更多
关键词 深水金线鱼 资源评估 数据缺乏 不确定性 资源量 繁殖潜力比
下载PDF
中国股票市场风险因子研究综述
16
作者 张斌 李晨 陆忠华 《数据与计算发展前沿(中英文)》 CSCD 2024年第6期146-159,共14页
【背景】股票市场在现代金融体系中扮演着关键的角色,为国家经济发展提供了有利的融资环境和健康的融资渠道。但作为风险投资市场,股票市场具有较高的敏感性和波动性,因此对其系统风险进行量化和防范显得尤为重要。【方法】风险因子作... 【背景】股票市场在现代金融体系中扮演着关键的角色,为国家经济发展提供了有利的融资环境和健康的融资渠道。但作为风险投资市场,股票市场具有较高的敏感性和波动性,因此对其系统风险进行量化和防范显得尤为重要。【方法】风险因子作为度量股市风险的重要指标,对构建有效的中国股市风险因子具有重要意义。本文分析和总结国内学者基于统计学和机器学习方法构建风险因子的相关研究,并对未来的发展方向进行展望。【结论】目前国内基于高频数据构建具有中国特色风险因子的相关研究仍较少。随着高频交易数据的应用,机器学习在构建风险因子领域有着广阔的应用前景。 展开更多
关键词 风险因子 股票市场风险 因子模型 机器学习 高频数据
下载PDF
Prediction of the Bombay Stock Exchange (BSE) Market Returns Using Artificial Neural Network and Genetic Algorithm
17
作者 Yusuf Perwej Asif Perwej 《Journal of Intelligent Learning Systems and Applications》 2012年第2期108-119,共12页
Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing ca... Stock Market is the market for security where organized issuance and trading of Stocks take place either through exchange or over the counter in electronic or physical form. It plays an important role in canalizing capital from the investors to the business houses, which consequently leads to the availability of funds for business expansion. In this paper, we investigate to predict the daily excess returns of Bombay Stock Exchange (BSE) indices over the respective Treasury bill rate returns. Initially, we prove that the excess return time series do not fluctuate randomly. We are applying the prediction models of Autoregressive feed forward Artificial Neural Networks (ANN) to predict the excess return time series using lagged value. For the Artificial Neural Networks model using a Genetic Algorithm is constructed to choose the optimal topology. This paper examines the feasibility of the prediction task and provides evidence that the markets are not fluctuating randomly and finally, to apply the most suitable prediction model and measure their efficiency. 展开更多
关键词 stock Market Genetic Algorithm Bombay stock Exchange (BSE) Artificial Neural Network (ANN) PREDICTION Forecasting data AUTOREGRESSIVE (AR)
下载PDF
存量数据转换自然资源管理实体生产实践
18
作者 刘松梁 王明省 +2 位作者 祁芳 秦炳权 王莹莹 《城市勘测》 2024年第4期6-10,共5页
基于加快推进新型基础测绘体系建设,不断提升基础测绘支撑服务能力和水平的目的,以存量1∶500大比例尺DLG数据为基础,结合DOM、国土变更调查等参考数据,研究DLG转换为基础地理实体和专业类自然资源管理实体生产流程,通过广州市新型基础... 基于加快推进新型基础测绘体系建设,不断提升基础测绘支撑服务能力和水平的目的,以存量1∶500大比例尺DLG数据为基础,结合DOM、国土变更调查等参考数据,研究DLG转换为基础地理实体和专业类自然资源管理实体生产流程,通过广州市新型基础测绘珠江新城(新中轴)琶洲试验区实践,分析基础地理实体和自然资源实体生产转换的技术实现过程以及转换成效。 展开更多
关键词 新型基础测绘 自然资源管理实体 存量数据 地理实体
下载PDF
基于立木胸径生长率模型的乔木林碳汇潜力评估 被引量:1
19
作者 季文旭 冯仲科 +1 位作者 张瀚月 王媛 《中国农业科技导报》 CSCD 北大核心 2024年第1期99-109,共11页
树木生长产生巨大碳汇,对于缓解碳排放带来的全球变暖等环境问题具有重要意义。为准确评估森林碳汇,基于第6至第9次国家森林资源连续清查数据建立北京市13个主要树种(组)4种形式的立木胸径年生长率模型,预测树木胸径变化的未来趋势,从... 树木生长产生巨大碳汇,对于缓解碳排放带来的全球变暖等环境问题具有重要意义。为准确评估森林碳汇,基于第6至第9次国家森林资源连续清查数据建立北京市13个主要树种(组)4种形式的立木胸径年生长率模型,预测树木胸径变化的未来趋势,从而为生物量转换因子连续函数法计算碳储量提供计算依据,最终获得2050年北京市乔木林碳储量和碳密度。结果表明:8个树种(组)胸径的年生长率模型R2都大于0.900,椴树的R^(2)最高为0.960;除柳树、水胡黄(水曲柳、胡桃楸、黄菠萝)外的11个树种(组)RMSE都小于0.5 cm;除杨树、其他硬阔类和榆树之外,Bias都小于1.0 cm。胸径预测精度验证中整体R^(2)较高,刺槐最高(0.951),其他硬阔类最低(0.766)。预测2050年北京市乔木林碳储量为42.71 Tg C,碳密度为43.35 Mg C·hm^(-2)。基于胸径年生长率模型的树木生长模拟方法可以有效的提高未来北京市乔木林碳汇潜力评估的整体精度,能够为制定温室气体减排政策、实现2060碳中和目标提供基础。 展开更多
关键词 森林资源连续清查数据 胸径生长率 碳储量 碳密度
下载PDF
应用空间格网化法估算森林碳储量
20
作者 王晓红 辛守英 +2 位作者 马明浩 王艺琳 焦琳琳 《东北林业大学学报》 CAS CSCD 北大核心 2024年第5期56-62,74,共8页
为了探究空间格网化方法在森林碳储量估算中的应用,以塞罕坝机械林场的二类调查数据为基础,利用空间格网化方法提取林班中与碳储量估算相关的林龄、株数、郁闭度、蓄积量参数,通过BO-RF算法完成建模与估算,应用反距离加权插值方法完成... 为了探究空间格网化方法在森林碳储量估算中的应用,以塞罕坝机械林场的二类调查数据为基础,利用空间格网化方法提取林班中与碳储量估算相关的林龄、株数、郁闭度、蓄积量参数,通过BO-RF算法完成建模与估算,应用反距离加权插值方法完成空间插值统计,最终实现塞罕坝林场森林碳储量的整体性估算。结果表明:在不同格网尺度中,以3×3、5×5格网尺度的主要优势树种碳储量估算模型的精度表现较佳,华北落叶松(Larix gmelinii var.principis-rupprechtii(Mayr) Pilger)、白桦(Betula platyphylla Sukaczev)、樟子松(Pinus sylvestris var.mongholica Litv.)、蒙古栎(Quercus mongolica Fisch. ex Ledeb.)和云杉(Picea asperata Mast.)的决定系数(R2)均高于0.864,偏差、相对偏差、均方根误差、相对均方根误差也都表现较优;5×5格网尺度的主要优势树种的BO-RF的碳储量估算模型分别对主要优势树种的林龄、株数、郁闭度与格网中心碳储量参数的拟合效果明显,决定系数(R2)分别为0.910、0.887、0.956、0.864、0.913;与利用二类调查数据直接估算林班碳储量相比,空间格网化估算碳储量的精度达到99%。 展开更多
关键词 空间格网化 二类调查数据 森林碳储量 转换模型
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部