The scheduling of earth observation satellites(EOSs)data transmission is a complex combinatorial optimization problem. Current researches mainly deal with this problem on the assumption that the data transmission mode...The scheduling of earth observation satellites(EOSs)data transmission is a complex combinatorial optimization problem. Current researches mainly deal with this problem on the assumption that the data transmission mode is fixed, either playback or real-time transmission. Considering the characteristic of the problem, a multi-satellite real-time and playback data transmission scheduling model is established and a novel algorithm based on quantum discrete particle swarm optimization(QDPSO)is proposed. Furthermore, we design the longest compatible transmission chain mutation operator to enhance the performance of the algorithm. Finally, some experiments are implemented to validate correctness and practicability of the proposed algorithm.展开更多
This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors ha...This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘The scheduling of earth observation satellites(EOSs)data transmission is a complex combinatorial optimization problem. Current researches mainly deal with this problem on the assumption that the data transmission mode is fixed, either playback or real-time transmission. Considering the characteristic of the problem, a multi-satellite real-time and playback data transmission scheduling model is established and a novel algorithm based on quantum discrete particle swarm optimization(QDPSO)is proposed. Furthermore, we design the longest compatible transmission chain mutation operator to enhance the performance of the algorithm. Finally, some experiments are implemented to validate correctness and practicability of the proposed algorithm.
基金funding from the Australian Government,via Grant No.AUSMURIB000001 associated with ONR MURI Grant No.N00014-19-1-2571。
文摘This paper considers a time-constrained data collection problem from a network of ground sensors located on uneven terrain by an Unmanned Aerial Vehicle(UAV),a typical Unmanned Aerial System(UAS).The ground sensors harvest renewable energy and are equipped with batteries and data buffers.The ground sensor model takes into account sensor data buffer and battery limitations.An asymptotically globally optimal method of joint UAV 3D trajectory optimization and data transmission schedule is developed.The developed method maximizes the amount of data transmitted to the UAV without losses and too long delays and minimizes the propulsion energy of the UAV.The developed algorithm of optimal trajectory optimization and transmission scheduling is based on dynamic programming.Computer simulations demonstrate the effectiveness of the proposed algorithm.