期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
Application of Bayesian Analysis Based on Neural Network and Deep Learning in Data Visualization
1
作者 Jiying Yang Qi Long +1 位作者 Xiaoyun Zhu Yuan Yang 《Journal of Electronic Research and Application》 2024年第4期88-93,共6页
This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,tradit... This study aims to explore the application of Bayesian analysis based on neural networks and deep learning in data visualization.The research background is that with the increasing amount and complexity of data,traditional data analysis methods have been unable to meet the needs.Research methods include building neural networks and deep learning models,optimizing and improving them through Bayesian analysis,and applying them to the visualization of large-scale data sets.The results show that the neural network combined with Bayesian analysis and deep learning method can effectively improve the accuracy and efficiency of data visualization,and enhance the intuitiveness and depth of data interpretation.The significance of the research is that it provides a new solution for data visualization in the big data environment and helps to further promote the development and application of data science. 展开更多
关键词 Neural network Deep learning Bayesian analysis data visualization Big data environment
下载PDF
Filter and Embedded Feature Selection Methods to Meet Big Data Visualization Challenges 被引量:1
2
作者 Kamal A.ElDahshan AbdAllah A.AlHabshy Luay Thamer Mohammed 《Computers, Materials & Continua》 SCIE EI 2023年第1期817-839,共23页
This study focuses on meeting the challenges of big data visualization by using of data reduction methods based the feature selection methods.To reduce the volume of big data and minimize model training time(Tt)while ... This study focuses on meeting the challenges of big data visualization by using of data reduction methods based the feature selection methods.To reduce the volume of big data and minimize model training time(Tt)while maintaining data quality.We contributed to meeting the challenges of big data visualization using the embedded method based“Select from model(SFM)”method by using“Random forest Importance algorithm(RFI)”and comparing it with the filter method by using“Select percentile(SP)”method based chi square“Chi2”tool for selecting the most important features,which are then fed into a classification process using the logistic regression(LR)algorithm and the k-nearest neighbor(KNN)algorithm.Thus,the classification accuracy(AC)performance of LRis also compared to theKNN approach in python on eight data sets to see which method produces the best rating when feature selection methods are applied.Consequently,the study concluded that the feature selection methods have a significant impact on the analysis and visualization of the data after removing the repetitive data and the data that do not affect the goal.After making several comparisons,the study suggests(SFMLR)using SFM based on RFI algorithm for feature selection,with LR algorithm for data classify.The proposal proved its efficacy by comparing its results with recent literature. 展开更多
关键词 data Redaction features selection Select from model Select percentile big data visualization data visualization
下载PDF
Exploring the growth value equity valuation model with data visualization
3
作者 I‑Cheng Yeh Yi‑Cheng Liu 《Financial Innovation》 2023年第1期19-55,共37页
The Growth Value Model(GVM)proposed theoretical closed form formulas consist-ing of Return on Equity(ROE)and the Price-to-Book value ratio(P/B)for fair stock prices and expected rates of return.Although regression ana... The Growth Value Model(GVM)proposed theoretical closed form formulas consist-ing of Return on Equity(ROE)and the Price-to-Book value ratio(P/B)for fair stock prices and expected rates of return.Although regression analysis can be employed to verify these theoretical closed form formulas,they cannot be explored by classical quintile or decile sorting approaches with intuition due to the essence of multi-factors and dynamical processes.This article uses visualization techniques to help intuitively explore GVM.The discerning findings and contributions of this paper is that we put forward the concept of the smart frontier,which can be regarded as the reasonable lower limit of P/B at a specific ROE by exploring fair P/B with ROE-P/B 2D dynamical process visualization.The coefficients in the formula can be determined by the quantile regression analysis with market data.The moving paths of the ROE and P/B in the cur-rent quarter and the subsequent quarters show that the portfolios at the lower right of the curve approaches this curve and stagnates here after the portfolios are formed.Furthermore,exploring expected rates of return with ROE-P/B-Return 3D dynamical process visualization,the results show that the data outside of the lower right edge of the“smart frontier”has positive quarterly return rates not only in the t+1 quarter but also in the t+2 quarter.The farther away the data in the t quarter is from the“smart frontier”,the larger the return rates in the t+1 and t+2 quarter. 展开更多
关键词 data visualization Stock prices Rates of return Return on equity Price-tobook value ratio
下载PDF
Painting image browser applying an associate-rule-aware multidimensional data visualization technique 被引量:1
4
作者 Ayaka Kaneko Akiko Komatsu +1 位作者 Takayuki Itoh Florence Ying Wang 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期18-30,共13页
Exploration of artworks is enjoyable but often time consuming.For example,it is not always easy to discover the favorite types of unknown painting works.It is not also always easy to explore unpopular painting works w... Exploration of artworks is enjoyable but often time consuming.For example,it is not always easy to discover the favorite types of unknown painting works.It is not also always easy to explore unpopular painting works which looks similar to painting works created by famous artists.This paper presents a painting image browser which assists the explorative discovery of user-interested painting works.The presented browser applies a new multidimensional data visualization technique that highlights particular ranges of particular numeric values based on association rules to suggest cues to find favorite painting images.This study assumes a large number of painting images are provided where categorical information(e.g.,names of artists,created year)is assigned to the images.The presented system firstly calculates the feature values of the images as a preprocessing step.Then the browser visualizes the multidimensional feature values as a heatmap and highlights association rules discovered from the relationships between the feature values and categorical information.This mechanism enables users to explore favorite painting images or painting images that look similar to famous painting works.Our case study and user evaluation demonstrates the effectiveness of the presented image browser. 展开更多
关键词 Painting image Multi-dimensional data visualization Association rule
下载PDF
Examining data visualization pitfalls in scientific publications
5
作者 Vinh T Nguyen Kwanghee Jung Vibhuti Gupta 《Visual Computing for Industry,Biomedicine,and Art》 EI 2021年第1期268-282,共15页
Data visualization blends art and science to convey stories from data via graphical representations.Considering different problems,applications,requirements,and design goals,it is challenging to combine these two comp... Data visualization blends art and science to convey stories from data via graphical representations.Considering different problems,applications,requirements,and design goals,it is challenging to combine these two components at their full force.While the art component involves creating visually appealing and easily interpreted graphics for users,the science component requires accurate representations of a large amount of input data.With a lack of the science component,visualization cannot serve its role of creating correct representations of the actual data,thus leading to wrong perception,interpretation,and decision.It might be even worse if incorrect visual representations were intentionally produced to deceive the viewers.To address common pitfalls in graphical representations,this paper focuses on identifying and understanding the root causes of misinformation in graphical representations.We reviewed the misleading data visualization examples in the scientific publications collected from indexing databases and then projected them onto the fundamental units of visual communication such as color,shape,size,and spatial orientation.Moreover,a text mining technique was applied to extract practical insights from common visualization pitfalls.Cochran’s Q test and McNemar’s test were conducted to examine if there is any difference in the proportions of common errors among color,shape,size,and spatial orientation.The findings showed that the pie chart is the most misused graphical representation,and size is the most critical issue.It was also observed that there were statistically significant differences in the proportion of errors among color,shape,size,and spatial orientation. 展开更多
关键词 data visualization Graphical representations MISINFORMATION Visual encodings Association rule mining Word cloud Cochran’s Q test McNemar’s test
下载PDF
Design of a Web Crawler for Water Quality Monitoring Data and Data Visualization
6
作者 Ziwen Yu Jianjun Zhang +6 位作者 Wenwu Tan Ziyi Xiong Peilun Li Liangqing Meng Haijun Lin Guang Sun Peng Guo 《Journal on Big Data》 2022年第2期135-143,共9页
Many countries are paying more and more attention to the protection of water resources at present,and how to protect water resources has received extensive attention from society.Water quality monitoring is the key wo... Many countries are paying more and more attention to the protection of water resources at present,and how to protect water resources has received extensive attention from society.Water quality monitoring is the key work to water resources protection.How to efficiently collect and analyze water quality monitoring data is an important aspect of water resources protection.In this paper,python programming tools and regular expressions were used to design a web crawler for the acquisition of water quality monitoring data from Global Freshwater Quality Database(GEMStat)sites,and the multi-thread parallelism was added to improve the efficiency in the process of downloading and parsing.In order to analyze and process the crawled water quality data,Pandas and Pyecharts are used to visualize the water quality data to show the intrinsic correlation and spatiotemporal relationship of the data. 展开更多
关键词 Water quality monitoring data web crawler data visualization
下载PDF
GPU Accelerated Marine Data Visualization Method 被引量:1
7
作者 LI Bo CHEN Ge +2 位作者 TIAN Fenglin SHAO Baomin JI Pengbo 《Journal of Ocean University of China》 SCIE CAS 2014年第6期964-970,共7页
The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean mo... The study of marine data visualization is of great value. Marine data, due to its large scale, random variation and multiresolution in nature, are hard to be visualized and analyzed. Nowadays, constructing an ocean model and visualizing model results have become some of the most important research topics of ‘Digital Ocean'. In this paper, a spherical ray casting method is developed to improve the traditional ray-casting algorithm and to make efficient use of GPUs. Aiming at the ocean current data, a 3D view-dependent line integral convolution method is used, in which the spatial frequency is adapted according to the distance from a camera. The study is based on a 3D virtual reality and visualization engine, namely the VV-Ocean. Some interactive operations are also provided to highlight the interesting structures and the characteristics of volumetric data. Finally, the marine data gathered in the East China Sea are displayed and analyzed. The results show that the method meets the requirements of real-time and interactive rendering. 展开更多
关键词 marine data visualization techniques and methodologies spherical ray casting line integral convolution multiquadric method VV-Ocean
下载PDF
Current state of the art and future directions: Augmented reality data visualization to support decision-making
8
作者 Mengya Zheng David Lillis Abraham G.Campbell 《Visual Informatics》 EI 2024年第2期80-105,共26页
Augmented Reality(AR),as a novel data visualization tool,is advantageous in revealing spatial data patterns and data-context associations.Accordingly,recent research has identified AR data visualization as a promising... Augmented Reality(AR),as a novel data visualization tool,is advantageous in revealing spatial data patterns and data-context associations.Accordingly,recent research has identified AR data visualization as a promising approach to increasing decision-making efficiency and effectiveness.As a result,AR has been applied in various decision support systems to enhance knowledge conveying and comprehension,in which the different data-reality associations have been constructed to aid decision-making.However,how these AR visualization strategies can enhance different decision support datasets has not been reviewed thoroughly.Especially given the rise of big data in the modern world,this support is critical to decision-making in the coming years.Using AR to embed the decision support data and explanation data into the end user’s physical surroundings and focal contexts avoids isolating the human decision-maker from the relevant data.Integrating the decision-maker’s contexts and the DSS support in AR is a difficult challenge.This paper outlines the current state of the art through a literature review in allowing AR data visualization to support decision-making.To facilitate the publication classification and analysis,the paper proposes one taxonomy to classify different AR data visualization based on the semantic associations between the AR data and physical context.Based on this taxonomy and a decision support system taxonomy,37 publications have been classified and analyzed from multiple aspects.One of the contributions of this literature review is a resulting AR visualization taxonomy that can be applied to decision support systems.Along with this novel tool,the paper discusses the current state of the art in this field and indicates possible future challenges and directions that AR data visualization will bring to support decision-making. 展开更多
关键词 Augmented reality Decision support data visualization TAXONOMY
原文传递
Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data
9
作者 Fahim Nasir Abdulghani Ali Ahmed +2 位作者 Mehmet Sabir Kiraz Iryna Yevseyeva Mubarak Saif 《Computers, Materials & Continua》 SCIE EI 2024年第10期1703-1728,共26页
Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challen... Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making.However,imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics,limiting their overall effectiveness.This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers(SLCs)and evaluates their performance in data-driven decision-making.The evaluation uses various metrics,with a particular focus on the Harmonic Mean Score(F-1 score)on an imbalanced real-world bank target marketing dataset.The findings indicate that grid-search random forest and random-search random forest excel in Precision and area under the curve,while Extreme Gradient Boosting(XGBoost)outperforms other traditional classifiers in terms of F-1 score.Employing oversampling methods to address the imbalanced data shows significant performance improvement in XGBoost,delivering superior results across all metrics,particularly when using the SMOTE variant known as the BorderlineSMOTE2 technique.The study concludes several key factors for effectively addressing the challenges of supervised learning with imbalanced datasets.These factors include the importance of selecting appropriate datasets for training and testing,choosing the right classifiers,employing effective techniques for processing and handling imbalanced datasets,and identifying suitable metrics for performance evaluation.Additionally,factors also entail the utilisation of effective exploratory data analysis in conjunction with visualisation techniques to yield insights conducive to data-driven decision-making. 展开更多
关键词 Big data machine learning data mining data visualization label encoding imbalanced dataset sampling techniques
下载PDF
Enhancing Data Analysis and Automation: Integrating Python with Microsoft Excel for Non-Programmers
10
作者 Osama Magdy Ali Mohamed Breik +2 位作者 Tarek Aly Atef Tayh Nour El-Din Raslan Mervat Gheith 《Journal of Software Engineering and Applications》 2024年第6期530-540,共11页
Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision... Microsoft Excel is essential for the End-User Approach (EUA), offering versatility in data organization, analysis, and visualization, as well as widespread accessibility. It fosters collaboration and informed decision-making across diverse domains. Conversely, Python is indispensable for professional programming due to its versatility, readability, extensive libraries, and robust community support. It enables efficient development, advanced data analysis, data mining, and automation, catering to diverse industries and applications. However, one primary issue when using Microsoft Excel with Python libraries is compatibility and interoperability. While Excel is a widely used tool for data storage and analysis, it may not seamlessly integrate with Python libraries, leading to challenges in reading and writing data, especially in complex or large datasets. Additionally, manipulating Excel files with Python may not always preserve formatting or formulas accurately, potentially affecting data integrity. Moreover, dependency on Excel’s graphical user interface (GUI) for automation can limit scalability and reproducibility compared to Python’s scripting capabilities. This paper covers the integration solution of empowering non-programmers to leverage Python’s capabilities within the familiar Excel environment. This enables users to perform advanced data analysis and automation tasks without requiring extensive programming knowledge. Based on Soliciting feedback from non-programmers who have tested the integration solution, the case study shows how the solution evaluates the ease of implementation, performance, and compatibility of Python with Excel versions. 展开更多
关键词 PYTHON End-User Approach Microsoft Excel data Analysis Integration SPREADSHEET PROGRAMMING data visualization
下载PDF
A Review of the Status and Development Strategies of Computer Science and Technology Under the Background of Big Data
11
作者 Junlin Zhang 《Journal of Electronic Research and Application》 2024年第2期49-53,共5页
This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technol... This article discusses the current status and development strategies of computer science and technology in the context of big data.Firstly,it explains the relationship between big data and computer science and technology,focusing on analyzing the current application status of computer science and technology in big data,including data storage,data processing,and data analysis.Then,it proposes development strategies for big data processing.Computer science and technology play a vital role in big data processing by providing strong technical support. 展开更多
关键词 Big data Computer science and technology data storage data processing data visualization
下载PDF
A Survey of Multi-Space Techniques in Spatio-Temporal Simulation Data Visualization
12
作者 Xueyi Chen Liming Shen +4 位作者 Ziqi Sha Richen Liu Siming Chen Genlin Ji Chao Tan 《Visual Informatics》 EI 2019年第3期129-139,共11页
The widespread use of numerical simulations in different scientific domains provides a variety of research opportunities.They often output a great deal of spatio-temporal simulation data,which are traditionally charac... The widespread use of numerical simulations in different scientific domains provides a variety of research opportunities.They often output a great deal of spatio-temporal simulation data,which are traditionally characterized as single-run,multi-run,multi-variate,multi-modal and multi-dimensional.From the perspective of data exploration and analysis,we noticed that many works focusing on spatiotemporal simulation data often share similar exploration techniques,for example,the exploration schemes designed in simulation space,parameter space,feature space and combinations of them.However,it lacks a survey to have a systematic overview of the essential commonalities shared by those works.In this survey,we take a novel multi-space perspective to categorize the state-ofthe-art works into three major categories.Specifically,the works are characterized as using similar techniques such as visual designs in simulation space(e.g,visual mapping,boxplot-based visual summarization,etc.),parameter space analysis(e.g,visual steering,parameter space projection,etc.)and data processing in feature space(e.g,feature definition and extraction,sampling,reduction and clustering of simulation data,etc.). 展开更多
关键词 Simulation data visualization Spatio-temporal data visualization Comparative visualization
原文传递
WebScope: A New Tool for Fusion Data Analysis and Visualization 被引量:4
13
作者 杨飞 党宁宁 肖炳甲 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第2期253-256,共4页
A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in diff... A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources. 展开更多
关键词 WebScope EAST MDSPLUS data visualization Java applet
下载PDF
Image-guided color mapping for categorical data visualization 被引量:2
14
作者 Qian Zheng Min Lu +3 位作者 Sicong Wu Ruizhen Hu Joel Lanir Hui Huang 《Computational Visual Media》 SCIE EI CSCD 2022年第4期613-629,共17页
Appropriate color mapping for categorical data visualization can significantly facilitate the discovery of underlying data patterns and effectively bring out visual aesthetics.Some systems suggest pre-defined palettes... Appropriate color mapping for categorical data visualization can significantly facilitate the discovery of underlying data patterns and effectively bring out visual aesthetics.Some systems suggest pre-defined palettes for this task.However,a predefined color mapping is not always optimal,failing to consider users’needs for customization.Given an input cate-gorical data visualization and a reference image,we present an effective method to automatically generate a coloring that resembles the reference while allowing classes to be easily distinguished.We extract a color palette with high perceptual distance between the colors by sampling dominant and discriminable colors from the image’s color space.These colors are assigned to given classes by solving an integer quadratic program to optimize point distinctness of the given chart while preserving the color spatial relations in the source image.We show results on various coloring tasks,with a diverse set of new coloring appearances for the input data.We also compare our approach to state-of-the-art palettes in a controlled user study,which shows that our method achieves comparable performance in class discrimination,while being more similar to the source image.User feedback after using our system verifies its efficiency in automatically generating desirable colorings that meet the user’s expectations when choosing a reference. 展开更多
关键词 color palette DISCRIMINABILITY IMAGE-GUIDED categorical data visualization
原文传递
Visualization of big data security: a case study on the KDD99 cup data set 被引量:3
15
作者 Zichan Ruan Yuantian Miao +2 位作者 Lei Pan Nicholas Patterson Jun Zhang 《Digital Communications and Networks》 SCIE 2017年第4期250-259,共10页
Cyber security has been thrust into the limelight in the modern technological era because of an array of attacks often bypassing tmtrained intrusion detection systems (IDSs). Therefore, greater attention has been di... Cyber security has been thrust into the limelight in the modern technological era because of an array of attacks often bypassing tmtrained intrusion detection systems (IDSs). Therefore, greater attention has been directed on being able deciphering better methods for identifying attack types to train IDSs more effectively. Keycyber-attack insights exist in big data; however, an efficient approach is required to determine strong attack types to train IDSs to become more effective in key areas. Despite the rising growth in IDS research, there is a lack of studies involving big data visualization, which is key. The KDD99 data set has served as a strong benchmark since 1999; therefore, we utilized this data set in our experiment. In this study, we utilized hash algorithm, a weight table, and sampling method to deal with the inherent problems caused by analyzing big data; volume, variety, and velocity. By utilizing a visualization algorithm, we were able to gain insights into the KDD99 data set with a clear iden- tification of "normal" clusters and described distinct clusters of effective attacks. 展开更多
关键词 Big data visualization Sampling method MDS PCA
下载PDF
Improving symbolic data visualization for pattern recognition and knowledge discovery 被引量:1
16
作者 Kadri Umbleja Manabu Ichino Hiroyuki Yaguchi 《Visual Informatics》 EI 2020年第1期23-31,共9页
This paper examines the visualization of symbolic data and considers the challenges rising from its complex structure.Symbolic data is usually aggregated from large data sets and used to hide entry specific details an... This paper examines the visualization of symbolic data and considers the challenges rising from its complex structure.Symbolic data is usually aggregated from large data sets and used to hide entry specific details and to transform huge amounts of data(like big data)into analyzable quantities.It is also used to offer an overview in places where general trends are more important than individual details.Symbolic data comes in many forms like intervals,histograms,categories and modal multi-valued objects.Symbolic data can also be considered as a distribution.Currently,the de facto visualization approach for symbolic data is zoomstars which has many limitations.The biggest limitation is that the default distributions(histograms)are not supported in 2D as additional dimension is required.This paper proposes several new improvements for zoomstars which would enable it to visualize histograms in 2D by using a quantile or an equivalent interval approach.In addition,several improvements for categorical and modal variables are proposed for a clearer indication of presented categories.Recommendations for different approaches to zoomstars are offered depending on the data type and the desired goal.Furthermore,an alternative approach that allows visualizing the whole data set in comprehensive table-like graph,called shape encoding,is proposed.These visualizations and their usefulness are verified with three symbolic data sets in exploratory data mining phase to identify trends,similar objects and important features,detecting outliers and discrepancies in the data. 展开更多
关键词 data visualization Symbolic data Zoomstar Shape encoding Exploratory data analysis
原文传递
Visualization Research and Application of Water Quality Monitoring Data Based on ECharts 被引量:4
17
作者 Yifu Sheng Weida Chen +2 位作者 Huan Wen Haijun Lin Jianjun Zhang 《Journal on Big Data》 2020年第1期1-8,共8页
Water resources are one of the basic resources for human survival,and water protection has been becoming a major problem for countries around the world.However,most of the traditional water quality monitoring research... Water resources are one of the basic resources for human survival,and water protection has been becoming a major problem for countries around the world.However,most of the traditional water quality monitoring research work is still concerned with the collection of water quality indicators,and ignored the analysis of water quality monitoring data and its value.In this paper,by adopting Laravel and AdminTE framework,we introduced how to design and implement a water quality data visualization platform based on Baidu ECharts.Through the deployed water quality sensor,the collected water quality indicator data is transmitted to the big data processing platform that deployed on Tencent Cloud in real time through the 4G network.The collected monitoring data is analyzed,and the processing result is visualized by Baidu ECharts.The test results showed that the designed system could run well and will provide decision support for water resource protection. 展开更多
关键词 Water quality monitoring echarts data visualization
下载PDF
IoT Based Greenhouse Real-Time Data Acquisition and Visualization through Message Queuing Telemetry Transfer (MQTT) Protocol 被引量:1
18
作者 Vincent de Paul Niyigena Kwizera Zhanming Li +2 位作者 Victus Elikplim Lumorvie Febronie Nambajemariya Xiaowei Niu 《Advances in Internet of Things》 2021年第2期77-93,共17页
One of the most indispensable needs of life is food and its worldwide availability endorsement has made agriculture an essential sector in recent years. As the technology evolved, the need to maintain a good and suita... One of the most indispensable needs of life is food and its worldwide availability endorsement has made agriculture an essential sector in recent years. As the technology evolved, the need to maintain a good and suitable climate in the greenhouse became imperative to ensure that the indoor plants are more productive hence the agriculture sector was not left behind. That notwithstanding, the introduction and deployment of IoT technology in agriculture solves many problems and increases crop production. This paper focuses mainly on the deployment of the Internet of Things (IoT) in acquiring real- time data of environmental parameters in the greenhouse. Various IoT technologies that can be applicable in greenhouse monitoring system was presented and in the proposed model, a method is developed to send the air temperature and humidity data obtained by the DHT11 sensor to the cloud using an ESP8266-based NodeMCU and firstly to the cloud platform Thing- Speak, and then to Adafruit.IO in which MQTT protocol was used for the reception of sensor data to the application layer referred as Human-Machine Interface. The system has been completely implemented in an actual prototype, allowing the acquiring of data and the publisher/subscriber concept used for communication. The data is published with a broker’s aid, which is responsible for transferring messages to the intended clients based on topic choice. Lastly, the functionality testing of MQTT was carried out and the results showed that the messages are successfully published. 展开更多
关键词 GREENHOUSE Sensors Monitoring System Internet of Things (IOT) Thing-Speak data visualization MQTT Adafruit.IO MQTT Testing
下载PDF
DAViS:a unified solution for data collection, analyzation,and visualization in real‑time stock market prediction
19
作者 Suppawong Tuarob Poom Wettayakorn +4 位作者 Ponpat Phetchai Siripong Traivijitkhun Sunghoon Lim Thanapon Noraset Tipajin Thaipisutikul 《Financial Innovation》 2021年第1期1232-1263,共32页
The explosion of online information with the recent advent of digital technology in information processing,information storing,information sharing,natural language processing,and text mining techniques has enabled sto... The explosion of online information with the recent advent of digital technology in information processing,information storing,information sharing,natural language processing,and text mining techniques has enabled stock investors to uncover market movement and volatility from heterogeneous content.For example,a typical stock market investor reads the news,explores market sentiment,and analyzes technical details in order to make a sound decision prior to purchasing or selling a particular company’s stock.However,capturing a dynamic stock market trend is challenging owing to high fluctuation and the non-stationary nature of the stock market.Although existing studies have attempted to enhance stock prediction,few have provided a complete decision-support system for investors to retrieve real-time data from multiple sources and extract insightful information for sound decision-making.To address the above challenge,we propose a unified solution for data collection,analysis,and visualization in real-time stock market prediction to retrieve and process relevant financial data from news articles,social media,and company technical information.We aim to provide not only useful information for stock investors but also meaningful visualization that enables investors to effectively interpret storyline events affecting stock prices.Specifically,we utilize an ensemble stacking of diversified machine-learning-based estimators and innovative contextual feature engineering to predict the next day’s stock prices.Experiment results show that our proposed stock forecasting method outperforms a traditional baseline with an average mean absolute percentage error of 0.93.Our findings confirm that leveraging an ensemble scheme of machine learning methods with contextual information improves stock prediction performance.Finally,our study could be further extended to a wide variety of innovative financial applications that seek to incorporate external insight from contextual information such as large-scale online news articles and social media data. 展开更多
关键词 Investment support system Stock data visualization Time series analysis Ensemble machine learning Text mining
下载PDF
On Visualization Analysis of Stock Data
20
作者 Yue Cai Zeying Song +6 位作者 Guang Sun Jing Wang Ziyi Guo Yi Zuo Xiaoping Fan Jianjun Zhang Lin Lang 《Journal on Big Data》 2019年第3期135-144,共10页
Big data technology is changing with each passing day,generating massive amounts of data every day.These data have large capacity,many types,fast growth,and valuable features.The same is true for the stock investment ... Big data technology is changing with each passing day,generating massive amounts of data every day.These data have large capacity,many types,fast growth,and valuable features.The same is true for the stock investment market.The growth of the amount of stock data generated every day is difficult to predict.The price trend in the stock market is uncertain,and the valuable information hidden in the stock data is difficult to detect.For example,the price trend of stocks,profit trends,how to make a reasonable speculation on the price trend of stocks and profit trends is a major problem that needs to be solved at this stage.This article uses the Python language to visually analyze,calculate,and predict each stock.Realize the integration and calculation of stock data to help people find out the valuable information hidden in stocks.The method proposed in this paper has been tested and proved to be feasible.It can reasonably extract,analyze and calculate the stock data,and predict the stock price trend to a certain extent. 展开更多
关键词 data visualization stock data data analysis
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部