Using the maximum amplitude ratios of vertical component of P and S waves recorded by a regional network, 921 focal mechanisms of Dayao earthquake doublet sequence are determined by means of synthetic seismograms of a...Using the maximum amplitude ratios of vertical component of P and S waves recorded by a regional network, 921 focal mechanisms of Dayao earthquake doublet sequence are determined by means of synthetic seismograms of a point source of dislocation in a plane layered medium. Among them, 389 focal mechanisms are in the aftershock sequence of M6.2 earthquake occurred on 21 July, 2003 and the other 532 focal mechanisms are in the aftershock sequence of M6.1 earthquake occurred on 16 October, 2003 in Dayao, Yurman. The focal mechanism consistent parameter a of the two aftershock sequences are calculated and analyzed. According to the focal mechanism consistent parameter a, the focal mechanisms of the first aftershock sequence are more consistent than those of the second. According to the comparison of CMT solutions of the two M6 earthquakes, the physical mechanism of the doublet in the intra-plate earthquake is very complex, and many processes are involved and interacted with each other. This doublet provides insights into earthquake clustering, triggering and stress cycling.展开更多
The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake locat...The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.展开更多
In this paper the crustal velocity structure are imaged at the annual scale for determining the evolution of 3D velocity structure before the Dayao earthquakes in 2003, and the relation between physical variation of m...In this paper the crustal velocity structure are imaged at the annual scale for determining the evolution of 3D velocity structure before the Dayao earthquakes in 2003, and the relation between physical variation of medium and cause of earthquake occurrence is discussed. Checkerboard resolution tests show that the spatial resolution at 15 km depth is approximate 0.6 around Dayao. Error analyses show that the error (Approximate 0.02 km/s) at the focus area is far smaller than the magnitude (approximate 0.15 kin/s) of velocity variation. Results of the studies show that a NNW-striking juncture zone of high- and low-velocity is formed before Dayao earthquake, whose strike is basically consistent with that of aftershock distribution of Dayao earthquakes and the focal mechanism, and the hypocenters lie on the high-velocity side of juncture zone. Furthermore, there is a low-velocity body under the hypocenters after Dayao earthquakes. The evolution of velocity structure provides restriction for discussing the circumstances of earthquake gestating and occurring.展开更多
The Ms6.2 Dayao, Yunnan, earthquake occurred on July 21, 2003, followed by a major Ms6.1 earthquake about 88 days later in the same region. Hypocenters of the two earthquakes are almost in the same place. Based on the...The Ms6.2 Dayao, Yunnan, earthquake occurred on July 21, 2003, followed by a major Ms6.1 earthquake about 88 days later in the same region. Hypocenters of the two earthquakes are almost in the same place. Based on the P wave first motion polarities of the two aftershock sequences recorded by temporary stations, we have studied the stress field in the aftershock zone and obtained the two stress field directions in Dayao region using the new version of PKU_Grid^Test Software provided by Chunquan Yu. Assuming that the rotation of the stress field is caused by the second main shock, we estimated the crustal stress value in the focal region by using the stress value calculation method proposed by Yongge Wan. The estimated maximum, intermediate and minimum principal stresses are 166.3 MPa, 158.7 MPa and 151 MPa, respectively, before the second main shock. The normal and shear stresses projected on the fault plane of the second main shock before it occurred are 157.3 MPa, 7.4 MPa, and are 158.8 MPa, 0.2 MPa after it occurred, respectively. The perturbed input parameters experiments attest the stability of the solution. The result shows that the preseismic shear stress is larger than the post-seismic one, and their difference corresponds to the stress drop approximately. The estimated compressive stress level is very high, but the differential stress is low. The result is helpful for friction coefficient estimation, plate motion simulation and related studies.展开更多
基金supported by the Program of the Eleventh Five-year Plan of China(2006BA-01B02-01-01)
文摘Using the maximum amplitude ratios of vertical component of P and S waves recorded by a regional network, 921 focal mechanisms of Dayao earthquake doublet sequence are determined by means of synthetic seismograms of a point source of dislocation in a plane layered medium. Among them, 389 focal mechanisms are in the aftershock sequence of M6.2 earthquake occurred on 21 July, 2003 and the other 532 focal mechanisms are in the aftershock sequence of M6.1 earthquake occurred on 16 October, 2003 in Dayao, Yurman. The focal mechanism consistent parameter a of the two aftershock sequences are calculated and analyzed. According to the focal mechanism consistent parameter a, the focal mechanisms of the first aftershock sequence are more consistent than those of the second. According to the comparison of CMT solutions of the two M6 earthquakes, the physical mechanism of the doublet in the intra-plate earthquake is very complex, and many processes are involved and interacted with each other. This doublet provides insights into earthquake clustering, triggering and stress cycling.
基金This project was sponsored by the National Programon KeyBasic Research Projects (2004CB418406) ,the Programfor the Tenth"Five-Year Plan"of China (2004BA601B01-04-03) andthe Joint Earthquake Science Foundation of China (606042) .
文摘The high-resolution hypocenter locations of the mainshocks on July 21 (M6.2) and October 16, 2003 (M6.1) and their aftershock sequences are determined in Dayao, Yunnan by using a double-difference earthquake location algorithm. The results show that the epicenters of the two mainshocks are very close to each other and the distribution of the aftershock sequence appears to be very linear. The distribution of the earthquake sequence is very consistent with the focal mechanism, and both mainshocks are of nearly vertical right-lateral fault. Unlike most other double earthquakes in the Yunmm area, the aftershock distribution of the M6.2 and M6.1 Dayao earthquakes does not appear to be a conjugated distribution but to be in a line, and there are some stacks in the two earthquake sequences. It can be inferred that they are all controlled by the same fault. The distribution of aftershocks is asymmetrical with respect to the mainshock location and appears to be unilateral. The aftershocks of the M6.2 mainshock centralize in the northwest of M6.2 earthquake and the aftershocks of the M6.1 earthquake are in the southeast of the mainshock, moreover, the M6.1 earthquake appears to be another rupture on the southeastern extensiou of the same fault as the M6.2 earthquake. The results of Coulomb failure static stress changes △σf show that the earthquake on July 21 (M6.2) apparently triggered the earthquake on October 16 (M6.1), the two mainshocks have stress triggering to their off-fault aftershocks to different extents, and the M6.5 earthquake that occurred in Yao'an in 2000 also triggered the occurrence of the two Dayao earthquakes.
基金State Key Basic Development and Programming Project (2004CB418406) and Youthful Foundation of China Earthquake Networks Center (0506)
文摘In this paper the crustal velocity structure are imaged at the annual scale for determining the evolution of 3D velocity structure before the Dayao earthquakes in 2003, and the relation between physical variation of medium and cause of earthquake occurrence is discussed. Checkerboard resolution tests show that the spatial resolution at 15 km depth is approximate 0.6 around Dayao. Error analyses show that the error (Approximate 0.02 km/s) at the focus area is far smaller than the magnitude (approximate 0.15 kin/s) of velocity variation. Results of the studies show that a NNW-striking juncture zone of high- and low-velocity is formed before Dayao earthquake, whose strike is basically consistent with that of aftershock distribution of Dayao earthquakes and the focal mechanism, and the hypocenters lie on the high-velocity side of juncture zone. Furthermore, there is a low-velocity body under the hypocenters after Dayao earthquakes. The evolution of velocity structure provides restriction for discussing the circumstances of earthquake gestating and occurring.
基金supported by the National Natural Science Foundation of China (40874022,41074072)Public Utility Research Project (200808053)973 program (2008CB425703)
文摘The Ms6.2 Dayao, Yunnan, earthquake occurred on July 21, 2003, followed by a major Ms6.1 earthquake about 88 days later in the same region. Hypocenters of the two earthquakes are almost in the same place. Based on the P wave first motion polarities of the two aftershock sequences recorded by temporary stations, we have studied the stress field in the aftershock zone and obtained the two stress field directions in Dayao region using the new version of PKU_Grid^Test Software provided by Chunquan Yu. Assuming that the rotation of the stress field is caused by the second main shock, we estimated the crustal stress value in the focal region by using the stress value calculation method proposed by Yongge Wan. The estimated maximum, intermediate and minimum principal stresses are 166.3 MPa, 158.7 MPa and 151 MPa, respectively, before the second main shock. The normal and shear stresses projected on the fault plane of the second main shock before it occurred are 157.3 MPa, 7.4 MPa, and are 158.8 MPa, 0.2 MPa after it occurred, respectively. The perturbed input parameters experiments attest the stability of the solution. The result shows that the preseismic shear stress is larger than the post-seismic one, and their difference corresponds to the stress drop approximately. The estimated compressive stress level is very high, but the differential stress is low. The result is helpful for friction coefficient estimation, plate motion simulation and related studies.