Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
In this study, we developed a summer dayglow model using auroral emissions acquired by the ultraviolet imager (UVI) onboard the Polar satellite. In the summer polar region, dayglow varies as a cosine-like function o...In this study, we developed a summer dayglow model using auroral emissions acquired by the ultraviolet imager (UVI) onboard the Polar satellite. In the summer polar region, dayglow varies as a cosine-like function of the solar zenith angle (SZA). The shape of this function can be characterized by its amplitude (Amp) and phase (Phi) factors. We first obtained the hourly Amp and Phi factors in summers from 1996 to 2000, and then investigated the universal time (UT) and solar activity variations of these two shape Factors. It was found that both factors were non-linearly dependent on the solar flux for all years, and the Amp factor showed clear UT variations under both low and high solar flux years. Thus, a dayglow model was constructed to consider the above dependencies. After the dayglow was removed automatically from the original UVI images via our model, the remaining auroral precipitation energy flux was in good agreement with previously reported magnetic local time latitude (MLT-MLAT) patterns. Our model provides a fast way to statistically process summer auroral precipitation of Polar/UVI and its variations.展开更多
1.27μm波段的氧分子近红外气辉是火星大气最重要的气辉辐射之一,该气辉高光谱分辨辐射传输模型的建立对于研制火星探测载荷,反演火星大气的风场温度场与臭氧浓度,以及研究火星空间物理,有重要的科学价值与工程意义.在研究火星大气O_(2)...1.27μm波段的氧分子近红外气辉是火星大气最重要的气辉辐射之一,该气辉高光谱分辨辐射传输模型的建立对于研制火星探测载荷,反演火星大气的风场温度场与臭氧浓度,以及研究火星空间物理,有重要的科学价值与工程意义.在研究火星大气O_(2)(a^(1)Δ_(g))气辉光化学反应模型的基础上,提出了O_(2)(a^(1)Δ_(g))气辉体辐射率的计算方法,并建立了火星大气气辉辐射传输理论;通过与用于研究火星大气特征的光谱学探测仪(Spectroscopy Spectrograph for the Investigation of Characteristics of the Atmosphere of Mars,SPICAM)的实测数据进行对比,验证了所建立的火星O_(2)(a^(1)Δ_(g))气辉高光谱分辨辐射传输模型的准确性;针对火星与地球大气的O_(2)(a^(1)Δ_(g))气辉,在体辐射率、自吸收效应,以及临边辐射光谱特性三个方面进行了系统深入的比较,对比结果表明,火星大气由于密度低、氧气丰度小,其自吸收效应可以忽略不计,但其O_(2)(a^(1)Δ_(g))气辉辐射强度与地球大气相当,可以用于火星大气的风场温度场与臭氧浓度的探测与反演.展开更多
The CO2^+;ultraviolet doublet(UVD)emission near 289 nm is an important feature of dayside airglow emission from planetaryupper atmospheres.In this study,we analyzed the brightness profiles of CO2^+;UVDemission on Mars...The CO2^+;ultraviolet doublet(UVD)emission near 289 nm is an important feature of dayside airglow emission from planetaryupper atmospheres.In this study,we analyzed the brightness profiles of CO2^+;UVDemission on Mars by using the extensive observationsmade by the lmaging Ultraviolet Spectrograph on board the recent Mars Atmosphere and Volatle Evolution spacecraft.Strong solar cycleand solar zenith angle variations in peak emission intensity and altitude were revealed by the data:(1)Both the peak intensity and altitude increase with increasing solar activity,and(2)the peak intensity decreases,whereas the peak altitude increases,with increasingsolar zenith angle.These observations can be favorably interpreted by the solar-driven scenario combined with the fact that photoionization and photoelectron impact ionization are the two most important processes responsible for the production of excited-state cotand consequently the intensity of CO2^+;UVDemission.Despite this,we propose that an extra driver,presumably related to thecomplicated variation in the background atmosphere,such as the occurrence of globaldust storms is required to fuly interpret theobservations.In general,our analysis suggests that the CO2^+;UVD emission is a useful diagnostic of the variability of the dayside Martianatmosphere under the influences of both internal and external drivers.展开更多
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
基金supported by the National Natural Science Foundation of China (Grant no. 41674154)Fundamental Research Funds for the Central Universities (Grant no. WK2080000077)
文摘In this study, we developed a summer dayglow model using auroral emissions acquired by the ultraviolet imager (UVI) onboard the Polar satellite. In the summer polar region, dayglow varies as a cosine-like function of the solar zenith angle (SZA). The shape of this function can be characterized by its amplitude (Amp) and phase (Phi) factors. We first obtained the hourly Amp and Phi factors in summers from 1996 to 2000, and then investigated the universal time (UT) and solar activity variations of these two shape Factors. It was found that both factors were non-linearly dependent on the solar flux for all years, and the Amp factor showed clear UT variations under both low and high solar flux years. Thus, a dayglow model was constructed to consider the above dependencies. After the dayglow was removed automatically from the original UVI images via our model, the remaining auroral precipitation energy flux was in good agreement with previously reported magnetic local time latitude (MLT-MLAT) patterns. Our model provides a fast way to statistically process summer auroral precipitation of Polar/UVI and its variations.
文摘1.27μm波段的氧分子近红外气辉是火星大气最重要的气辉辐射之一,该气辉高光谱分辨辐射传输模型的建立对于研制火星探测载荷,反演火星大气的风场温度场与臭氧浓度,以及研究火星空间物理,有重要的科学价值与工程意义.在研究火星大气O_(2)(a^(1)Δ_(g))气辉光化学反应模型的基础上,提出了O_(2)(a^(1)Δ_(g))气辉体辐射率的计算方法,并建立了火星大气气辉辐射传输理论;通过与用于研究火星大气特征的光谱学探测仪(Spectroscopy Spectrograph for the Investigation of Characteristics of the Atmosphere of Mars,SPICAM)的实测数据进行对比,验证了所建立的火星O_(2)(a^(1)Δ_(g))气辉高光谱分辨辐射传输模型的准确性;针对火星与地球大气的O_(2)(a^(1)Δ_(g))气辉,在体辐射率、自吸收效应,以及临边辐射光谱特性三个方面进行了系统深入的比较,对比结果表明,火星大气由于密度低、氧气丰度小,其自吸收效应可以忽略不计,但其O_(2)(a^(1)Δ_(g))气辉辐射强度与地球大气相当,可以用于火星大气的风场温度场与臭氧浓度的探测与反演.
基金This work is supported by the B-type Strategic Priority Program(no.XDB41000000)the Chinese Academy of Sciences and the pre-research project on Civil Aerospace Technologies(no.D020105)the China National Space Administration.The authors also acknowledge support from the National Science Foundation of China(NSFC)through grants 41525015 and 41774186.The data used in this work are publicly available at the MAVEN Science Data Center(http://lasp.colorado.edu/maven/sdc/public/).
文摘The CO2^+;ultraviolet doublet(UVD)emission near 289 nm is an important feature of dayside airglow emission from planetaryupper atmospheres.In this study,we analyzed the brightness profiles of CO2^+;UVDemission on Mars by using the extensive observationsmade by the lmaging Ultraviolet Spectrograph on board the recent Mars Atmosphere and Volatle Evolution spacecraft.Strong solar cycleand solar zenith angle variations in peak emission intensity and altitude were revealed by the data:(1)Both the peak intensity and altitude increase with increasing solar activity,and(2)the peak intensity decreases,whereas the peak altitude increases,with increasingsolar zenith angle.These observations can be favorably interpreted by the solar-driven scenario combined with the fact that photoionization and photoelectron impact ionization are the two most important processes responsible for the production of excited-state cotand consequently the intensity of CO2^+;UVDemission.Despite this,we propose that an extra driver,presumably related to thecomplicated variation in the background atmosphere,such as the occurrence of globaldust storms is required to fuly interpret theobservations.In general,our analysis suggests that the CO2^+;UVD emission is a useful diagnostic of the variability of the dayside Martianatmosphere under the influences of both internal and external drivers.