Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise...Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.展开更多
In this paper, we propose an improved Directed Acyclic Graph Support Vector Machine (DAGSVM) for multi-class classification. Compared with the traditional DAGSVM, the improved version has advantages that the structu...In this paper, we propose an improved Directed Acyclic Graph Support Vector Machine (DAGSVM) for multi-class classification. Compared with the traditional DAGSVM, the improved version has advantages that the structure of the directed acyclic graph is not chosen random and fixed, and it can be adaptive to be optimal according to the incoming testing samples, thus it has a good generalization performance. From experiments on six datasets, we can see that the proposed improved version of DAGSVM is better than the traditional one with respect to the accuracy rate.展开更多
Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for ...Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for each pairs of points. Based on the proximity graph model [3], the Euclidean distance in Hilbert space is calculated using a Gaussian kernel, which is the right criterion to generate a minimum spanning tree using Kruskal's algorithm. Then the connectivity estimation is lowered by only checking the linkages between the edges that construct the main stem of the MST (Minimum Spanning Tree), in which the non-compatibility degree is originally defined to support the edge selection during linkage estimations. This new approach is experimentally analyzed. The results show that the revised algorithm has a better performance than the proximity graph model with faster speed, optimized clustering quality and strong ability to noise suppression, which makes SVC scalable to large data sets.展开更多
The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the l...The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.展开更多
To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited pene...To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201310)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201160)the China Postdoctoral Science Foundation(Grant No.20110491067)
文摘Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.
文摘In this paper, we propose an improved Directed Acyclic Graph Support Vector Machine (DAGSVM) for multi-class classification. Compared with the traditional DAGSVM, the improved version has advantages that the structure of the directed acyclic graph is not chosen random and fixed, and it can be adaptive to be optimal according to the incoming testing samples, thus it has a good generalization performance. From experiments on six datasets, we can see that the proposed improved version of DAGSVM is better than the traditional one with respect to the accuracy rate.
基金TheNationalHighTechnologyResearchandDevelopmentProgramofChina (No .86 3 5 11 930 0 0 9)
文摘Support Vector Clustering (SVC) is a kernel-based unsupervised learning clustering method. The main drawback of SVC is its high computational complexity in getting the adjacency matrix describing the connectivity for each pairs of points. Based on the proximity graph model [3], the Euclidean distance in Hilbert space is calculated using a Gaussian kernel, which is the right criterion to generate a minimum spanning tree using Kruskal's algorithm. Then the connectivity estimation is lowered by only checking the linkages between the edges that construct the main stem of the MST (Minimum Spanning Tree), in which the non-compatibility degree is originally defined to support the edge selection during linkage estimations. This new approach is experimentally analyzed. The results show that the revised algorithm has a better performance than the proximity graph model with faster speed, optimized clustering quality and strong ability to noise suppression, which makes SVC scalable to large data sets.
基金This work was supported by the National Defence Pre-research Foundation of China(30502010103).
文摘The detection and recognition of radar signals play a critical role in the maintenance of future electronic warfare(EW).So far,however,there are still problems with signal detection and recognition,especially in the low probability of intercept(LPI)radar.This paper explores the usefulness of such an algorithm in the scenario of LPI radar signal detection and recognition based on visibility graphs(VG).More network and feature information can be extracted in the VG two-dimensional space,this algorithm can solve the problem of signal recognition using the autocorrelation function.Wavelet denoising processing is introduced into the signal to be tested,and the denoised signal is converted to the VG domain.Then,the signal detection is performed by using the constant false alarm of the VG average degree.Next,weight the converted graph.Finally,perform feature extraction on the weighted image,and use the feature to complete the recognition.It is testified that the proposed algorithm offers significant improvements,such as robustness to noise,and the detection and recognition accuracy,over the recent researches.
基金supported by the China Postdoctoral Science Foundation(2015M572694,2016T90979).
文摘To address the problem of the weak anti-noise and macro-trend extraction abilities of the current methods for identifying radar antenna scan type,a recognition method for radar antenna scan types based on limited penetrable visibility graph(LPVG)is proposed.Firstly,seven types of radar antenna scans are analyzed,which include the circular scan,sector scan,helical scan,raster scan,conical scan,electromechanical hybrid scan and two-dimensional electronic scan.Then,the time series of the pulse amplitude in the radar reconnaissance receiver is converted into an LPVG network,and the feature parameters are extracted.Finally,the recognition result is obtained by using a support vector machine(SVM)classifier.The experimental results show that the recognition accuracy and noise resistance of this new method are improved,where the average recognition accuracy for radar antenna type is at least 90%when the signalto-noise ratio(SNR)is 5 dB and above.