Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japon...Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japonica) as materials. Under shading treatments, the starch, amylose and sucrose contents decreased, while ADP-glucose pyrophosphorylase (ADPGPPase) activity only changed a little, soluble starch synthase activity and granule bound starch synthase activity decreased, soluble starch branching enzyme (SSBE, Q-enzyme) activity and granule bound starch branching enzyme (GBSBE, Q-enzyme) activity increased, and starch debranching enzyme (DBE, R-enzyme) activity varied with varieties. Correlation analyses showed that the changes of starch content were positively and significantly correlated with the changes of sucrose content in the weak light. Both ADPGPPase activity and SSBE activity were positively and significantly correlated with starch accumulation rate. It was implied that the decline of starch synthase activities was related to the decrease of starch content and the increase of the activity of starch branching enzyme played an important role in the decrease of the ratio of amylose to the total starch under the weak light.展开更多
Starch,a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications.Despite the starch biosynthetic pathway’s main enzymes have been characteri...Starch,a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications.Despite the starch biosynthetic pathway’s main enzymes have been characterized,their origin and evolution remained a subject of debate.In this study,we conducted the comprehensive phylogenetic and structural analysis of three types of starch biosynthetic enzymes:starch synthase(SS),starch branching enzyme(SBE)and isoamylase-type debranching enzyme(ISA)from 51,151 annotated genomes.Our findings provide valuable insights into the possible scenario for the origin and evolution of the starch biosynthetic pathway.Initially,the ancestor of SBE can be traced back to an unidentified bacterium that existed before the formation of the last eukaryotic common ancestor(LECA)via horizontal gene transfer(HGT).This transfer event likely provided the eukaryote ancestor with the ability to synthesize glycogen.Furthermore,during the emergence of Archaeplastida,one clade of SS was transferred from Deltaproteobacteria by HGT,while ISA and the other clade of SS originated from Chlamydiae through endosymbiosis gene transfer(EGT).Both these transfer events collectively contributed to the establishment of the original starch biosynthetic pathway.Subsequently,after the divergence of Viridiplantae from Rhodophyta,all three enzymes underwent multiple duplications and N-terminus extension domain modifications,resulting in the formation of functionally specialized isoforms and ultimately leading to the complete starch biosynthetic pathway.By shedding light on the evolutionary origins of key enzymes involved in the starch biosynthetic pathway,this study provides important insights into the evolutionary events of plants.展开更多
文摘Dynamic changes of starch, amylose, sucrose contents and the activities of starch synthesis enzymes under shading treatments alter flowering were studied using two rice varieties IR72 (indica) and Nipponbare (japonica) as materials. Under shading treatments, the starch, amylose and sucrose contents decreased, while ADP-glucose pyrophosphorylase (ADPGPPase) activity only changed a little, soluble starch synthase activity and granule bound starch synthase activity decreased, soluble starch branching enzyme (SSBE, Q-enzyme) activity and granule bound starch branching enzyme (GBSBE, Q-enzyme) activity increased, and starch debranching enzyme (DBE, R-enzyme) activity varied with varieties. Correlation analyses showed that the changes of starch content were positively and significantly correlated with the changes of sucrose content in the weak light. Both ADPGPPase activity and SSBE activity were positively and significantly correlated with starch accumulation rate. It was implied that the decline of starch synthase activities was related to the decrease of starch content and the increase of the activity of starch branching enzyme played an important role in the decrease of the ratio of amylose to the total starch under the weak light.
基金the National Key R&D Program of China(No.2021YFC2103500)the Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(No.TSBICIP-KJGG-009-02 and No.TSBICIP-CXRC-003).
文摘Starch,a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications.Despite the starch biosynthetic pathway’s main enzymes have been characterized,their origin and evolution remained a subject of debate.In this study,we conducted the comprehensive phylogenetic and structural analysis of three types of starch biosynthetic enzymes:starch synthase(SS),starch branching enzyme(SBE)and isoamylase-type debranching enzyme(ISA)from 51,151 annotated genomes.Our findings provide valuable insights into the possible scenario for the origin and evolution of the starch biosynthetic pathway.Initially,the ancestor of SBE can be traced back to an unidentified bacterium that existed before the formation of the last eukaryotic common ancestor(LECA)via horizontal gene transfer(HGT).This transfer event likely provided the eukaryote ancestor with the ability to synthesize glycogen.Furthermore,during the emergence of Archaeplastida,one clade of SS was transferred from Deltaproteobacteria by HGT,while ISA and the other clade of SS originated from Chlamydiae through endosymbiosis gene transfer(EGT).Both these transfer events collectively contributed to the establishment of the original starch biosynthetic pathway.Subsequently,after the divergence of Viridiplantae from Rhodophyta,all three enzymes underwent multiple duplications and N-terminus extension domain modifications,resulting in the formation of functionally specialized isoforms and ultimately leading to the complete starch biosynthetic pathway.By shedding light on the evolutionary origins of key enzymes involved in the starch biosynthetic pathway,this study provides important insights into the evolutionary events of plants.