The plane-wave pseudo-potential method within the framework of first-principles technique is used to investigate the fundamental structural properties of Si3N4. The calculated ground-state parameters agree quite well ...The plane-wave pseudo-potential method within the framework of first-principles technique is used to investigate the fundamental structural properties of Si3N4. The calculated ground-state parameters agree quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 45 GPa when compressed below 300 K. No phase transition can be seen in the pressure range of 0-45 GPa and the temperature range of 0-300 K. Actually, the α→β transition occurs at 1600 K and 7.98 GPa. Many thermodynamic properties, such as bulk modulus, heat capacity, thermal expansion, Gr/ineisen parameter and Debye temperature of a-Si3N4 were determined at various temperatures and pressures. Significant differ- ences in these properties were observed at high temperature and high pressure. The calculated results are in good agreement with the available experimental data and previous theoretical values. Therefore, our results may provide useful information for theoretical and experimental investigations of the N-based hard materials like α-Si3N4.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.11105115 and 11005088)the Project of Basic and Advanced Technology of Henan Province of China (Grant No.112300410021)
文摘The plane-wave pseudo-potential method within the framework of first-principles technique is used to investigate the fundamental structural properties of Si3N4. The calculated ground-state parameters agree quite well with the experimental data. Our calculation reveals that α-Si3N4 can retain its stability to at least 45 GPa when compressed below 300 K. No phase transition can be seen in the pressure range of 0-45 GPa and the temperature range of 0-300 K. Actually, the α→β transition occurs at 1600 K and 7.98 GPa. Many thermodynamic properties, such as bulk modulus, heat capacity, thermal expansion, Gr/ineisen parameter and Debye temperature of a-Si3N4 were determined at various temperatures and pressures. Significant differ- ences in these properties were observed at high temperature and high pressure. The calculated results are in good agreement with the available experimental data and previous theoretical values. Therefore, our results may provide useful information for theoretical and experimental investigations of the N-based hard materials like α-Si3N4.