Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual cas...Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual case studies. The Sarnu-Dandali alkaline complex, near the northwestern limit of the Deccan Traps continental flood basalt province, contains mafic to felsic alkaline volcano-plutonic rocks and carbonatites. The complex is situated near the northern end of the 600 km long, NNWe SSE-trending Barmer-Cambay rift. Mafic enclave swarms in the syenites suggest synplutonic mafic dykes injected into a largely liquid felsic magma chamber. Later coherent dykes in the complex, of all compositions and sizes,dominantly strike NNWe SSE, parallel to the Barmer-Cambay rift. The rift formed during two distinct episodes of extension, NWe SE in the early Cretaceous and NEe SW in the late Cretaceous. Control of the southern Indian Dharwar structural fabric on the rift trend, as speculated previously, is untenable,whereas the regional Precambrian basement trends(Aravalli and Malani) run NEe SW and NNEe SSW.We therefore suggest that the small-scale Sarnu-Dandali dykes and the much larger-scale BarmerCambay rift were not controlled by basement structure, but related to contemporaneous, late Cretaceous regional ENEe WSW extension, for which there is varied independent evidence.展开更多
Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this pro...Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this problem appears to have been overcome partly by using long offset seismic data. However near offset data are yet to be fully utilised due to the complex waveform caused by the surface as well as internal heterogeneity of the basalts. The near normal incidence data, which influence the sub-basalt imaging, are highly useful to understand the internal structure within a basalt layer. The use of converted waves for such targets has been proposed as an alternative in a rather homogeneous basalt layer. With a few synthetic modelling exercises here we highlight the practical difficulties in dealing with more realistic and heterogeneous basalt flow. Full waveform seismograms are computed to understand the effects of intra-trappean sediments on the seismic data. A case study from the Deccan Traps of India is presented in this paper. First, we discuss the effects of intercalated sediments on the overall seismic image. Later, the sonic log data from the field are used to compute the full wave-field response using the reflectivity method and compared with the field data. The feasibility of using mode converted waves (P to S and vice-versa at the top and bottom basalt interfaces) for sub-basalt imaging in Kutch region is discussed through a series of velocity-depth profiles. By comparing with the field data we demonstrate that the effects of multiple thin layering within the basalt can strongly deteriorate the image we seek to interpret and exploit.展开更多
Dykes are primarily extensional fractures that form perpendicular to the minimum principal compressive stress,which have been extensively studied in the world during the past decades for various reasons including the
A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the ...A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the relationship between various litho-units of Deccan traps,stability of tunnel and TBM performances during the construction of5.83km long tunnel between Maroshi and Vakola.The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around70m.The tunneling work was carried out without disturbance to the ground.The rock types encountered during excavation arefine compacted basalt,porphyritic basalt,amygdaloidal basalt pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales Relations between rock mass properties,physico-mechanical properties,TBM specifications and the cor responding TBM performance were established.A number of support systems installed in the tunne during excavation were also discussed.The aim of this paper is to establish,with appropriate accuracy the nature of subsurface rock mass condition and to study how it will react to or behave during under ground excavation by TBM.The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.展开更多
The prominent linear dyke ridges outcropped in the Narmada-Tapi dykes’ swarm represent an intrusion in the Deccan Traps. Understanding the relationship among the underlying geological structures, the strike of the dy...The prominent linear dyke ridges outcropped in the Narmada-Tapi dykes’ swarm represent an intrusion in the Deccan Traps. Understanding the relationship among the underlying geological structures, the strike of the dykes, and the channel patterns is essential. Dykes act as obstructions to stream flow, causing diversions, and their geometry and patterns significantly impact the rivers and streams that drain and cross the dyke swarm zone. For this study, Google Earth images, LISS III images, and Cartosat DEM were used to delineate the Shivan basin and extract dyke features. The Shivan River basin is a sixth-order drainage system that reflects superimposed drainage systems within the Tapi dyke swarm zone. About 65% (169 km2) of its area is controlled by dyke orientation. The dyke ridges align predominantly in an East-West (E-W) direction, a pattern mainly followed by lower-order streams, which have developed an insequent, transverse drainage network within the dyke swarm zone. In the lower parts of the Shivan basin, where the number of dykes decreases, the drainage network follows the general slope and is oriented in a North-South direction. The Shivan River and its tributaries have partially adjusted to the dyke orientation, resulting in a transverse drainage pattern in areas characterized by parallel dyke ridges.展开更多
Continental Flood Basalts(CFB)occupy one fourth of the world’s land area.Hence,it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources developme...Continental Flood Basalts(CFB)occupy one fourth of the world’s land area.Hence,it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development.A model assisted isotope,geochemical,geospatial and geophysical study was conducted to understand the monsoonal characteristics,recharge processes,renewability and geochemical evolution in one of the largest continental flood basalt provinces of India.HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics.Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge.Lumped parameter models(LPM)were employed to quantify the mean transit time(MTT)of groundwater.Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path.A geophysical model was used to understand the geometry of the aquifer.The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea.Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned;(i)quick and direct recharge by precipitation through fractured and weathered basalt,(ii)low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge.Tritium data showed that the groundwater is a renewable source and have shorter transit times(from present day to<30 years).The hydrogeochemical study indicated multiple sources/processes such as:the minerals dissolution,silicate weathering,ion exchange,anthropogenic influences etc.control the chemistry of the groundwater.Based on the geo-electrical resistivity survey,the potential zones(weathered and fractured)were delineated for the groundwater development.Thus,the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.展开更多
The magnetotelluric (MT) method has been among the favorite supporting tools for seismic imaging of sub-salt and sub-basalt targets. In this paper we present an example from Kachchh, India (where basaltic rocks ove...The magnetotelluric (MT) method has been among the favorite supporting tools for seismic imaging of sub-salt and sub-basalt targets. In this paper we present an example from Kachchh, India (where basaltic rocks overlie Mesozoic sedimentary rocks), and discuss the feasibility of using MT method as an exploration tool in this geological setting. Our results highlight the difference in magnetotelluric response caused by the thin intrabasalt layering. The key issue addressed in this paper is what MT can and cannot provide in such geological settings. First, we compute apparent resistivity and phase response curves using representative resistivity-depth models and borehole data from the study area. Later, we compare these results to assess the plausibility of using MT to image the sub-volcanic sediments at Kachchh. Finally, we substantiate our discussion through one-dimensional inversion of the field observed MT data from this region that exhibits poor sensitivity of MT for thin basalt layers.展开更多
基金supported by the Industrial Research and Consultancy Centre (IRCC), IIT Bombay (Grant No. 09YIA001 to Sheth)supported by a Ph.D. Scholarship from the University Grants Commission (UGC), Govt. of India
文摘Whether swarms of preferentially oriented dykes are controlled by regional stress fields, or passively exploit basement structural fabric, is a much debated question, with support for either scenario in individual case studies. The Sarnu-Dandali alkaline complex, near the northwestern limit of the Deccan Traps continental flood basalt province, contains mafic to felsic alkaline volcano-plutonic rocks and carbonatites. The complex is situated near the northern end of the 600 km long, NNWe SSE-trending Barmer-Cambay rift. Mafic enclave swarms in the syenites suggest synplutonic mafic dykes injected into a largely liquid felsic magma chamber. Later coherent dykes in the complex, of all compositions and sizes,dominantly strike NNWe SSE, parallel to the Barmer-Cambay rift. The rift formed during two distinct episodes of extension, NWe SE in the early Cretaceous and NEe SW in the late Cretaceous. Control of the southern Indian Dharwar structural fabric on the rift trend, as speculated previously, is untenable,whereas the regional Precambrian basement trends(Aravalli and Malani) run NEe SW and NNEe SSW.We therefore suggest that the small-scale Sarnu-Dandali dykes and the much larger-scale BarmerCambay rift were not controlled by basement structure, but related to contemporaneous, late Cretaceous regional ENEe WSW extension, for which there is varied independent evidence.
文摘Hydrocarbon exploration interests have renewed the need for developing new sub basalt imaging techniques. One of the most important problems encountered today is seismic imaging below basalt. In recent years, this problem appears to have been overcome partly by using long offset seismic data. However near offset data are yet to be fully utilised due to the complex waveform caused by the surface as well as internal heterogeneity of the basalts. The near normal incidence data, which influence the sub-basalt imaging, are highly useful to understand the internal structure within a basalt layer. The use of converted waves for such targets has been proposed as an alternative in a rather homogeneous basalt layer. With a few synthetic modelling exercises here we highlight the practical difficulties in dealing with more realistic and heterogeneous basalt flow. Full waveform seismograms are computed to understand the effects of intra-trappean sediments on the seismic data. A case study from the Deccan Traps of India is presented in this paper. First, we discuss the effects of intercalated sediments on the overall seismic image. Later, the sonic log data from the field are used to compute the full wave-field response using the reflectivity method and compared with the field data. The feasibility of using mode converted waves (P to S and vice-versa at the top and bottom basalt interfaces) for sub-basalt imaging in Kutch region is discussed through a series of velocity-depth profiles. By comparing with the field data we demonstrate that the effects of multiple thin layering within the basalt can strongly deteriorate the image we seek to interpret and exploit.
文摘Dykes are primarily extensional fractures that form perpendicular to the minimum principal compressive stress,which have been extensively studied in the world during the past decades for various reasons including the
基金a part of the project "Universities Natural Science Research Project in Anhui Province" (KJ2011Z375)supported by Department of Education of Anhui Province
文摘A12.24km long tunnel between Maroshi and Ruparel College is being excavated by tunnel boring machine(TBM)to improve the water supply system of Greater Mumbai,India.In this paper,attempt has been made to establish the relationship between various litho-units of Deccan traps,stability of tunnel and TBM performances during the construction of5.83km long tunnel between Maroshi and Vakola.The Maroshi–Vakola tunnel passes under the Mumbai Airport and crosses both runways with an overburden cover of around70m.The tunneling work was carried out without disturbance to the ground.The rock types encountered during excavation arefine compacted basalt,porphyritic basalt,amygdaloidal basalt pyroclastic rocks with layers of red boles and intertrappean beds consisting of various types of shales Relations between rock mass properties,physico-mechanical properties,TBM specifications and the cor responding TBM performance were established.A number of support systems installed in the tunne during excavation were also discussed.The aim of this paper is to establish,with appropriate accuracy the nature of subsurface rock mass condition and to study how it will react to or behave during under ground excavation by TBM.The experiences gained from this project will increase the ability to cope with unexpected ground conditions during tunneling using TBM.
文摘The prominent linear dyke ridges outcropped in the Narmada-Tapi dykes’ swarm represent an intrusion in the Deccan Traps. Understanding the relationship among the underlying geological structures, the strike of the dykes, and the channel patterns is essential. Dykes act as obstructions to stream flow, causing diversions, and their geometry and patterns significantly impact the rivers and streams that drain and cross the dyke swarm zone. For this study, Google Earth images, LISS III images, and Cartosat DEM were used to delineate the Shivan basin and extract dyke features. The Shivan River basin is a sixth-order drainage system that reflects superimposed drainage systems within the Tapi dyke swarm zone. About 65% (169 km2) of its area is controlled by dyke orientation. The dyke ridges align predominantly in an East-West (E-W) direction, a pattern mainly followed by lower-order streams, which have developed an insequent, transverse drainage network within the dyke swarm zone. In the lower parts of the Shivan basin, where the number of dykes decreases, the drainage network follows the general slope and is oriented in a North-South direction. The Shivan River and its tributaries have partially adjusted to the dyke orientation, resulting in a transverse drainage pattern in areas characterized by parallel dyke ridges.
文摘Continental Flood Basalts(CFB)occupy one fourth of the world’s land area.Hence,it is important to discern the hydrological processes in this complex hydrogeological setup for the sustainable water resources development.A model assisted isotope,geochemical,geospatial and geophysical study was conducted to understand the monsoonal characteristics,recharge processes,renewability and geochemical evolution in one of the largest continental flood basalt provinces of India.HYSPLIT modelling and stable isotopes were used to assess the monsoonal characteristics.Rayleigh distillation model were used to understand the climatic conditions at the time of groundwater recharge.Lumped parameter models(LPM)were employed to quantify the mean transit time(MTT)of groundwater.Statistical and geochemical models were adopted to understand the geochemical evolution along the groundwater flow path.A geophysical model was used to understand the geometry of the aquifer.The back trajectory analysis confirms the isotopic finding that precipitation in this region is caused by orographic uplifting of air masses originating from the Arabian Sea.Stable isotopic data of groundwater showed its meteoric origin and two recharge processes were discerned;(i)quick and direct recharge by precipitation through fractured and weathered basalt,(ii)low infiltration through the clayey black cotton soil and subjected to evaporation prior to the recharge.Tritium data showed that the groundwater is a renewable source and have shorter transit times(from present day to<30 years).The hydrogeochemical study indicated multiple sources/processes such as:the minerals dissolution,silicate weathering,ion exchange,anthropogenic influences etc.control the chemistry of the groundwater.Based on the geo-electrical resistivity survey,the potential zones(weathered and fractured)were delineated for the groundwater development.Thus,the study highlights the usefulness of model assisted isotopic hydrogeochemical techniques for understanding the recharge and geochemical processes in a basaltic aquifer system.
文摘The magnetotelluric (MT) method has been among the favorite supporting tools for seismic imaging of sub-salt and sub-basalt targets. In this paper we present an example from Kachchh, India (where basaltic rocks overlie Mesozoic sedimentary rocks), and discuss the feasibility of using MT method as an exploration tool in this geological setting. Our results highlight the difference in magnetotelluric response caused by the thin intrabasalt layering. The key issue addressed in this paper is what MT can and cannot provide in such geological settings. First, we compute apparent resistivity and phase response curves using representative resistivity-depth models and borehole data from the study area. Later, we compare these results to assess the plausibility of using MT to image the sub-volcanic sediments at Kachchh. Finally, we substantiate our discussion through one-dimensional inversion of the field observed MT data from this region that exhibits poor sensitivity of MT for thin basalt layers.