期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Research on Scholarship Evaluation System based on Decision Tree Algorithm 被引量:1
1
作者 YIN Xiao WANG Ming-yu 《电脑知识与技术》 2015年第3X期11-13,共3页
Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the betteri... Under the modern education system of China, the annual scholarship evaluation is a vital thing for many of the collegestudents. This paper adopts the classification algorithm of decision tree C4.5 based on the bettering of ID3 algorithm and constructa data set of the scholarship evaluation system through the analysis of the related attributes in scholarship evaluation information.And also having found some factors that plays a significant role in the growing up of the college students through analysis and re-search of moral education, intellectural education and culture&PE. 展开更多
关键词 data mining scholarship evaluation system decision tree algorithm C4.5 algorithm
下载PDF
Vibration Based Tool Insert Health Monitoring Using Decision Tree and Fuzzy Logic 被引量:1
2
作者 Kundur Shantisagar R.Jegadeeshwaran +1 位作者 G.Sakthivel T.M.Alamelu Manghai 《Structural Durability & Health Monitoring》 EI 2019年第3期303-316,共14页
The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibrat... The productivity and quality in the turning process can be improved by utilizing the predicted performance of the cutting tools.This research incorporates condition monitoring of a non-carbide tool insert using vibration analysis along with machine learning and fuzzy logic approach.A non-carbide tool insert is considered for the process of cutting operation in a semi-automatic lathe,where the condition of tool is monitored using vibration characteristics.The vibration signals for conditions such as heathy,damaged,thermal and flank were acquired with the help of piezoelectric transducer and data acquisition system.The descriptive statistical features were extracted from the acquired vibration signal using the feature extraction techniques.The extracted statistical features were selected using a feature selection process through J48 decision tree algorithm.The selected features were classified using J48 decision tree and fuzzy to develop the fault diagnosis model for the improved predictive analysis.The decision tree model produced the classification accuracy as 94.78%with five selected features.The developed fuzzy model produced the classification accuracy as 94.02%with five membership functions.Hence,the decision tree has been proposed as a suitable fault diagnosis model for predicting the tool insert health condition under different fault conditions. 展开更多
关键词 Statistical features J48 decision tree algorithm confusion matrix fuzzy logic WEKA
下载PDF
THE METHODS OF EXTRACTING WATER INFORMATION FROM SPOT IMAGE 被引量:5
3
作者 DUJin-kang FENGXue-zhi 《Chinese Geographical Science》 SCIE CSCD 2002年第1期68-72,共5页
Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers base... Some techniques and methods for deriving water information from SPOT-4(XI) image were investigated and discussed in this paper. An algorithm of decision tree (DT) classification which includes several classifiers based on the spectral responding characteristics of water bodies and other objects, was developed and put forward to delineate water bodies. Another algorithm of decision tree classification based on both spectral characteristics and auxiliary information of DEM and slope (DTDS) was also designed for water bodies extraction. In addition, supervised classification method of maximum likelyhood classification (MLC), and unsupervised method of interactive self organizing dada analysis technique (ISODATA) were used to extract waterbodies for comparison purpose. An index was designed and used to assess the accuracy of different methods adopted in the research. Results have shown that water extraction accuracy was variable with respect to the various techniques applied. It was low using ISODATA, very high using DT algorithm and much higher using both DTDS and MLC. 展开更多
关键词 water body decision tree algorithm accuracy assessment
下载PDF
Condition Monitoring of Roller Bearing by K-star Classifier andK-nearest Neighborhood Classifier Using Sound Signal
4
作者 Rahul Kumar Sharma V.Sugumaran +1 位作者 Hemantha Kumar M.Amarnath 《Structural Durability & Health Monitoring》 EI 2017年第1期1-17,共17页
Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is v... Most of the machineries in small or large-scale industry have rotating elementsupported by bearings for rigid support and accurate movement. For proper functioning ofmachinery, condition monitoring of the bearing is very important. In present study soundsignal is used to continuously monitor bearing health as sound signals of rotatingmachineries carry dynamic information of components. There are numerous studies inliterature that are reporting superiority of vibration signal of bearing fault diagnosis.However, there are very few studies done using sound signal. The cost associated withcondition monitoring using sound signal (Microphone) is less than the cost of transducerused to acquire vibration signal (Accelerometer). This paper employs sound signal forcondition monitoring of roller bearing by K-star classifier and k-nearest neighborhoodclassifier. The statistical feature extraction is performed from acquired sound signals. Thentwo-layer feature selection is done using J48 decision tree algorithm and random treealgorithm. These selected features were classified using K-star classifier and k-nearestneighborhood classifier and parametric optimization is performed to achieve the maximumclassification accuracy. The classification results for both K-star classifier and k-nearestneighborhood classifier for condition monitoring of roller bearing using sound signals werecompared. 展开更多
关键词 K-star k-nearest neighborhood K-NN machine learning approach conditionmonitoring fault diagnosis roller bearing decision tree algorithm J-48 random treealgorithm decision making two-layer feature selection sound signal statistical features
下载PDF
A HYBRID APPROACH FOR MINIMIZING MAKESPAN IN PERMUTATION FLOWSHOP SCHEDULING 被引量:4
5
作者 Kannan Govindan R'Balasundaram +1 位作者 N.Baskar e.Asokan 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2017年第1期50-76,共27页
This work proposes a hybrid approach for solving traditional flowshop scheduling problems to reduce the makespan (total completion time). To solve scheduling problems, a combination of Decision Tree (DT) and Scatt... This work proposes a hybrid approach for solving traditional flowshop scheduling problems to reduce the makespan (total completion time). To solve scheduling problems, a combination of Decision Tree (DT) and Scatter Search (SS) algorithms are used. Initially, the DT is used to generate a seed solution which is then given input to the SS to obtain optimal / near optimal solutions of makespan. The DT used the entropy function to convert the given problem into a tree structured format / set of rules. The SS provides an extensive investigation of the search space through diversification. The advantages of both DT and SS are used to form a hybrid approach. The proposed algorithm is tested with various benchmark datasets available for flowshop scheduling. The statistical results prove that the proposed method is competent and efficient for solving flowshop problems. 展开更多
关键词 Flowshop scheduling MAKESPAN decision tree algorithm scatter search algorithm hybrid algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部