Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for st...Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.展开更多
The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the...The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.展开更多
Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend...Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.展开更多
The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects...The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects the students’personality traits,causes dormitory disputes,and affects the students’quality of life and academic quality.This paper collects freshmen's data according to college students’personal preferences,conducts a classification comparison,uses the decision tree classification algorithm based on the information gain principle as the core algorithm of dormitory allocation,determines the description rules of students’personal preferences and decision tree classification preferences,completes the conceptual design of the database of entity relations and data dictionaries,meets students’personality classification requirements for the dormitory,and lays the foundation for the intelligent dormitory allocation system.展开更多
Big data is usually unstructured, and many applications require theanalysis in real-time. Decision tree (DT) algorithm is widely used to analyzebig data. Selecting the optimal depth of DT is time-consuming process as ...Big data is usually unstructured, and many applications require theanalysis in real-time. Decision tree (DT) algorithm is widely used to analyzebig data. Selecting the optimal depth of DT is time-consuming process as itrequires many iterations. In this paper, we have designed a modified versionof a (DT). The tree aims to achieve optimal depth by self-tuning runningparameters and improving the accuracy. The efficiency of the modified (DT)was verified using two datasets (airport and fire datasets). The airport datasethas 500000 instances and the fire dataset has 600000 instances. A comparisonhas been made between the modified (DT) and standard (DT) with resultsshowing that the modified performs better. This comparison was conductedon multi-node on Apache Spark tool using Amazon web services. Resultingin accuracy with an increase of 6.85% for the first dataset and 8.85% for theairport dataset. In conclusion, the modified DT showed better accuracy inhandling different-sized datasets compared to standard DT algorithm.展开更多
Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on mult...Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.展开更多
[Objective] The aim was to explore the feasibility of using single spectrum image to classify crops based on multi-spectral image and Decision Tree Method. [Method] Taking the typical agriculture plantation area in Hu...[Objective] The aim was to explore the feasibility of using single spectrum image to classify crops based on multi-spectral image and Decision Tree Method. [Method] Taking the typical agriculture plantation area in Hulunbeier area, according to field measured spectrum data, the optimum time of main crops, barley, wheat, rapeseed, based on crops spectrum characteristics, by dint of decision-making tree method, and considering spectral matching method, classification of crops was studied such as SAM. [Result] By dint of Landsat TM image gained in the first half of August, based on geographic and atmospheric proof-reading, decision-making tree was constructed. Plantation information about wheat, barley, and rapeseed and plantation grassland was extracted successfully. The general classification accuracy reached 86.90%. Kappa coefficient was 0.831 1. [Conclusion] Taking typical spectrum image as data source, and applying Decision Tree Method to get crops type's information had fine application future.展开更多
With western Jilin Province as the study region, spectral characteristics and texture features of remote sensing images were taken as the classification basis to construct a Decision Tree Model and extract information...With western Jilin Province as the study region, spectral characteristics and texture features of remote sensing images were taken as the classification basis to construct a Decision Tree Model and extract information about settlements in western Jilin Province, and the manually-extracted information about settlements in western Jilin Province was evaluated by confusion matrix. The results showed that Decision Tree Model was convenient for extracting settlements information by integrating spectral and texture features, and the accuracy of such a method was higher than that of the traditional Maximum Liklihood Method, in addition, calculation methods of extracting settlements information by this mean were concluded.展开更多
Based on the discuss of the basic concept of data mining technology and the decision tree method,combining with the data samples of wind and hailstorm disasters in some counties of Mudanjiang region,the forecasting mo...Based on the discuss of the basic concept of data mining technology and the decision tree method,combining with the data samples of wind and hailstorm disasters in some counties of Mudanjiang region,the forecasting model of agro-meteorological disaster grade was established by adopting the C4.5 classification algorithm of decision tree,which can forecast the direct economic loss degree to provide rational data mining model and obtain effective analysis results.展开更多
[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm base...[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm based upon clustering is adopted in this paper,which is improved against the defect that traditional decision tree algorithm fails to handle samples of no classes.Meanwhile,the improved algorithm is also applied to the screening of maize varieties.Through the indices as leaf area,plant height,dry weight,potassium(K) utilization and others,maize seeds with strong tolerance of hypokalemic are filtered out.[Result] The algorithm in the screening of maize germplasm has great applicability and good performance.[Conclusion] In the future more efforts should be made to compare improved the performance of fuzzy decision tree based upon clustering with the performance of traditional fuzzy one,and it should be applied into more realistic problems.展开更多
To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of...To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.展开更多
This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting de...This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.展开更多
In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence ...In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence time), influent COD/TN and HRT(hydraulic retention time) were studied. Results indicated that it was possible to increase nitrogen removal by using corresponding control strategies, such as, adjusting the DO set point according to effluent ammonia concentration; manipulating nitrate recirculation flow according to nitrate concentration at the end of anoxic zone. Based on the experiments results, a knowledge-based approach for supervision of the nitrogen removal problems was considered, and decision trees for diagnosing nitrification and denitrification problems were built and successfully applied to A/O process.展开更多
To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field obs...To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area.展开更多
AIM: To evaluate a different decision tree for safe liver resection and verify its efficiency.METHODS: A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA Gen...AIM: To evaluate a different decision tree for safe liver resection and verify its efficiency.METHODS: A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA General Hospital,and 634 hepatocellular carcinoma(HCC) patients were eligible for the final analyses. Post-hepatectomy liver failure(PHLF) was identified by the association of prothrombin time < 50% and serum bilirubin > 50 μmol/L(the "50-50" criteria),which were assessed at day 5 postoperatively or later. The Swiss-Clavien decision tree,Tokyo University-Makuuchi decision tree,and Chinese consensus decision tree were adopted to divide patients into two groups based on those decision trees in sequence,and the PHLF rates were recorded.RESULTS: The overall mortality and PHLF rate were 0.16% and 3.0%. A total of 19 patients experienced PHLF. The numbers of patients to whom the SwissClavien,Tokyo University-Makuuchi,and Chinese consensus decision trees were applied were 581,573,and 622,and the PHLF rates were 2.75%,2.62%,and 2.73%,respectively. Significantly more cases satisfied the Chinese consensus decision tree than the Swiss-Clavien decision tree and Tokyo University-Makuuchi decision tree(P < 0.01,P < 0.01); nevertheless,the latter two shared no difference(P = 0.147). The PHLF rate exhibited no significant difference with respect to the three decision trees.CONCLUSION: The Chinese consensus decision tree expands the indications for hepatic resection for HCC patients and does not increase the PHLF rate compared to the Swiss-Clavien and Tokyo UniversityMakuuchi decision trees. It would be a safe and effective algorithm for hepatectomy in patients with hepatocellular carcinoma.展开更多
基金supported by the National Nat-ural Science Foundation of China(No.52203376)the National Key Research and Development Program of China(No.2023YFB3813200).
文摘Traditional 3Ni weathering steel cannot completely meet the requirements for offshore engineering development,resulting in the design of novel 3Ni steel with the addition of microalloy elements such as Mn or Nb for strength enhancement becoming a trend.The stress-assisted corrosion behavior of a novel designed high-strength 3Ni steel was investigated in the current study using the corrosion big data method.The information on the corrosion process was recorded using the galvanic corrosion current monitoring method.The gradi-ent boosting decision tree(GBDT)machine learning method was used to mine the corrosion mechanism,and the importance of the struc-ture factor was investigated.Field exposure tests were conducted to verify the calculated results using the GBDT method.Results indic-ated that the GBDT method can be effectively used to study the influence of structural factors on the corrosion process of 3Ni steel.Dif-ferent mechanisms for the addition of Mn and Cu to the stress-assisted corrosion of 3Ni steel suggested that Mn and Cu have no obvious effect on the corrosion rate of non-stressed 3Ni steel during the early stage of corrosion.When the corrosion reached a stable state,the in-crease in Mn element content increased the corrosion rate of 3Ni steel,while Cu reduced this rate.In the presence of stress,the increase in Mn element content and Cu addition can inhibit the corrosion process.The corrosion law of outdoor-exposed 3Ni steel is consistent with the law based on corrosion big data technology,verifying the reliability of the big data evaluation method and data prediction model selection.
文摘The North China Plain and the agricultural region are crossed by the Shanxi-Beijing natural gas pipeline.Resi-dents in the area use rototillers for planting and harvesting;however,the depth of the rototillers into the ground is greater than the depth of the pipeline,posing a significant threat to the safe operation of the pipeline.Therefore,it is of great significance to study the dynamic response of rotary tillers impacting pipelines to ensure the safe opera-tion of pipelines.This article focuses on the Shanxi-Beijing natural gas pipeline,utilizingfinite element simulation software to establish afinite element model for the interaction among the machinery,pipeline,and soil,and ana-lyzing the dynamic response of the pipeline.At the same time,a decision tree model is introduced to classify the damage of pipelines under different working conditions,and the boundary value and importance of each influen-cing factor on pipeline damage are derived.Considering the actual conditions in the hemp yam planting area,targeted management measures have been proposed to ensure the operational safety of the Shanxi-Beijing natural gas pipeline in this region.
文摘Accurate prediction ofmonthly oil and gas production is essential for oil enterprises tomake reasonable production plans,avoid blind investment and realize sustainable development.Traditional oil well production trend prediction methods are based on years of oil field production experience and expertise,and the application conditions are very demanding.With the rapid development of artificial intelligence technology,big data analysis methods are gradually applied in various sub-fields of the oil and gas reservoir development.Based on the data-driven artificial intelligence algorithmGradient BoostingDecision Tree(GBDT),this paper predicts the initial single-layer production by considering geological data,fluid PVT data and well data.The results show that the GBDT algorithm prediction model has great accuracy,significantly improving efficiency and strong universal applicability.The GBDTmethod trained in this paper can predict production,which is helpful for well site optimization,perforation layer optimization and engineering parameter optimization and has guiding significance for oilfield development.
文摘The trend toward designing an intelligent distribution system based on students’individual differences and individual needs has taken precedence in view of the traditional dormitory distribution system,which neglects the students’personality traits,causes dormitory disputes,and affects the students’quality of life and academic quality.This paper collects freshmen's data according to college students’personal preferences,conducts a classification comparison,uses the decision tree classification algorithm based on the information gain principle as the core algorithm of dormitory allocation,determines the description rules of students’personal preferences and decision tree classification preferences,completes the conceptual design of the database of entity relations and data dictionaries,meets students’personality classification requirements for the dormitory,and lays the foundation for the intelligent dormitory allocation system.
文摘Big data is usually unstructured, and many applications require theanalysis in real-time. Decision tree (DT) algorithm is widely used to analyzebig data. Selecting the optimal depth of DT is time-consuming process as itrequires many iterations. In this paper, we have designed a modified versionof a (DT). The tree aims to achieve optimal depth by self-tuning runningparameters and improving the accuracy. The efficiency of the modified (DT)was verified using two datasets (airport and fire datasets). The airport datasethas 500000 instances and the fire dataset has 600000 instances. A comparisonhas been made between the modified (DT) and standard (DT) with resultsshowing that the modified performs better. This comparison was conductedon multi-node on Apache Spark tool using Amazon web services. Resultingin accuracy with an increase of 6.85% for the first dataset and 8.85% for theairport dataset. In conclusion, the modified DT showed better accuracy inhandling different-sized datasets compared to standard DT algorithm.
基金Foundation of China(No.52067013)the Key Natural Science Fund Project of Gansu Provincial Department of Science and Technology(No.21JR7RA280)+1 种基金the Tianyou Innovation Team Science Foundation of Intelligent Power Supply and State Perception for Rail Transit(No.TY202010)the Natural Science Foundation of Gansu Province(No.20JR5RA395).
文摘Aiming at the problems of multiple types of power quality composite disturbances,strong feature correlation and high recognition error rate,a method of power quality composite disturbances identification based on multiresolution S-transform and decision tree was proposed.Firstly,according to IEEE standard,the signal models of seven single power quality disturbances and 17 combined power quality disturbances are given,and the disturbance waveform samples are generated in batches.Then,in order to improve the recognition accuracy,the adjustment factor is introduced to obtain the controllable time-frequency resolution through multi-resolution S-transform time-frequency domain analysis.On this basis,five disturbance time-frequency domain features are extracted,which quantitatively reflect the characteristics of the analyzed power quality disturbance signal,which is less than the traditional method based on S-transform.Finally,three classifiers such as K-nearest neighbor,support vector machine and decision tree algorithm are used to effectively complete the identification of power quality composite disturbances.Simulation results showthat the classification accuracy of decision tree algorithmis higher than that of K-nearest neighbor and support vector machine.Finally,the proposed method is compared with other commonly used recognition algorithms.Experimental results show that the proposedmethod is effective in terms of detection accuracy,especially for combined PQ interference.
基金Supported by the Open Subject of Key Lab of Resources Remote-sensing and Digital Agriculture in Agricultural Department(RDA1008)~~
文摘[Objective] The aim was to explore the feasibility of using single spectrum image to classify crops based on multi-spectral image and Decision Tree Method. [Method] Taking the typical agriculture plantation area in Hulunbeier area, according to field measured spectrum data, the optimum time of main crops, barley, wheat, rapeseed, based on crops spectrum characteristics, by dint of decision-making tree method, and considering spectral matching method, classification of crops was studied such as SAM. [Result] By dint of Landsat TM image gained in the first half of August, based on geographic and atmospheric proof-reading, decision-making tree was constructed. Plantation information about wheat, barley, and rapeseed and plantation grassland was extracted successfully. The general classification accuracy reached 86.90%. Kappa coefficient was 0.831 1. [Conclusion] Taking typical spectrum image as data source, and applying Decision Tree Method to get crops type's information had fine application future.
基金Supported by Financial Support of China Geological Survey(1212010916048)the Fundamental Research Funds for the Central Universities(200903046)~~
文摘With western Jilin Province as the study region, spectral characteristics and texture features of remote sensing images were taken as the classification basis to construct a Decision Tree Model and extract information about settlements in western Jilin Province, and the manually-extracted information about settlements in western Jilin Province was evaluated by confusion matrix. The results showed that Decision Tree Model was convenient for extracting settlements information by integrating spectral and texture features, and the accuracy of such a method was higher than that of the traditional Maximum Liklihood Method, in addition, calculation methods of extracting settlements information by this mean were concluded.
基金Supported by Science and Technology Plan of Mudanjiang City (G200920064)Teaching Reform Construction of Mudanjiang Normal University (10-xj11080)
文摘Based on the discuss of the basic concept of data mining technology and the decision tree method,combining with the data samples of wind and hailstorm disasters in some counties of Mudanjiang region,the forecasting model of agro-meteorological disaster grade was established by adopting the C4.5 classification algorithm of decision tree,which can forecast the direct economic loss degree to provide rational data mining model and obtain effective analysis results.
文摘[Objective] This paper aims to construct an improved fuzzy decision tree which is based on clustering,and researches into its application in the screening of maize germplasm.[Method] A new decision tree algorithm based upon clustering is adopted in this paper,which is improved against the defect that traditional decision tree algorithm fails to handle samples of no classes.Meanwhile,the improved algorithm is also applied to the screening of maize varieties.Through the indices as leaf area,plant height,dry weight,potassium(K) utilization and others,maize seeds with strong tolerance of hypokalemic are filtered out.[Result] The algorithm in the screening of maize germplasm has great applicability and good performance.[Conclusion] In the future more efforts should be made to compare improved the performance of fuzzy decision tree based upon clustering with the performance of traditional fuzzy one,and it should be applied into more realistic problems.
基金supported by the National Natural Science Foundation of China (60604021 60874054)
文摘To solve the multi-class fault diagnosis tasks, decision tree support vector machine (DTSVM), which combines SVM and decision tree using the concept of dichotomy, is proposed. Since the classification performance of DTSVM highly depends on its structure, to cluster the multi-classes with maximum distance between the clustering centers of the two sub-classes, genetic algorithm is introduced into the formation of decision tree, so that the most separable classes would be separated at each node of decisions tree. Numerical simulations conducted on three datasets compared with "one-against-all" and "one-against-one" demonstrate the proposed method has better performance and higher generalization ability than the two conventional methods.
基金This work was supported in part by the National Natural Science Foundation of China(61601418,41602362,61871259)in part by the Opening Foundation of Hunan Engineering and Research Center of Natural Resource Investigation and Monitoring(2020-5)+1 种基金in part by the Qilian Mountain National Park Research Center(Qinghai)(grant number:GKQ2019-01)in part by the Geomatics Technology and Application Key Laboratory of Qinghai Province,Grant No.QHDX-2019-01.
文摘This work was to generate landslide susceptibility maps for the Three Gorges Reservoir(TGR) area, China by using different machine learning models. Three advanced machine learning methods, namely, gradient boosting decision tree(GBDT), random forest(RF) and information value(InV) models, were used, and the performances were assessed and compared. In total, 202 landslides were mapped by using a series of field surveys, aerial photographs, and reviews of historical and bibliographical data. Nine causative factors were then considered in landslide susceptibility map generation by using the GBDT, RF and InV models. All of the maps of the causative factors were resampled to a resolution of 28.5 m. Of the 486289 pixels in the area,28526 pixels were landslide pixels, and 457763 pixels were non-landslide pixels. Finally, landslide susceptibility maps were generated by using the three machine learning models, and their performances were assessed through receiver operating characteristic(ROC) curves, the sensitivity, specificity,overall accuracy(OA), and kappa coefficient(KAPPA). The results showed that the GBDT, RF and In V models in overall produced reasonable accurate landslide susceptibility maps. Among these three methods, the GBDT method outperforms the other two machine learning methods, which can provide strong technical support for producing landslide susceptibility maps in TGR.
文摘In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence time), influent COD/TN and HRT(hydraulic retention time) were studied. Results indicated that it was possible to increase nitrogen removal by using corresponding control strategies, such as, adjusting the DO set point according to effluent ammonia concentration; manipulating nitrate recirculation flow according to nitrate concentration at the end of anoxic zone. Based on the experiments results, a knowledge-based approach for supervision of the nitrogen removal problems was considered, and decision trees for diagnosing nitrification and denitrification problems were built and successfully applied to A/O process.
基金College of Agriculture and Natural Resources,University of Tehran for financial support of the study(Grant No.7104017/6/24 and 28)
文摘To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area.
基金Supported by Grants from the Project of the National Science and Technology Major Project,No.2012BAI06B01Postdoctoral Science Foundation funded project,No.201003781
文摘AIM: To evaluate a different decision tree for safe liver resection and verify its efficiency.METHODS: A total of 2457 patients underwent hepatic resection between January 2004 and December 2010 at the Chinese PLA General Hospital,and 634 hepatocellular carcinoma(HCC) patients were eligible for the final analyses. Post-hepatectomy liver failure(PHLF) was identified by the association of prothrombin time < 50% and serum bilirubin > 50 μmol/L(the "50-50" criteria),which were assessed at day 5 postoperatively or later. The Swiss-Clavien decision tree,Tokyo University-Makuuchi decision tree,and Chinese consensus decision tree were adopted to divide patients into two groups based on those decision trees in sequence,and the PHLF rates were recorded.RESULTS: The overall mortality and PHLF rate were 0.16% and 3.0%. A total of 19 patients experienced PHLF. The numbers of patients to whom the SwissClavien,Tokyo University-Makuuchi,and Chinese consensus decision trees were applied were 581,573,and 622,and the PHLF rates were 2.75%,2.62%,and 2.73%,respectively. Significantly more cases satisfied the Chinese consensus decision tree than the Swiss-Clavien decision tree and Tokyo University-Makuuchi decision tree(P < 0.01,P < 0.01); nevertheless,the latter two shared no difference(P = 0.147). The PHLF rate exhibited no significant difference with respect to the three decision trees.CONCLUSION: The Chinese consensus decision tree expands the indications for hepatic resection for HCC patients and does not increase the PHLF rate compared to the Swiss-Clavien and Tokyo UniversityMakuuchi decision trees. It would be a safe and effective algorithm for hepatectomy in patients with hepatocellular carcinoma.