A 6.25 Gbps SerDes core used in the high signed based on the OIF-CEI-02.0 standard. To speed backplane communication receiver has been decounteract the serious Inter-Syrmbol-Interference (ISI), the core employed a h...A 6.25 Gbps SerDes core used in the high signed based on the OIF-CEI-02.0 standard. To speed backplane communication receiver has been decounteract the serious Inter-Syrmbol-Interference (ISI), the core employed a half-rate four-tap decision feedback equalizer (DFE). The equalizer used the Signsign least mean-squared (SS-LMS) algorithm to realize the coefficient adaptation. An automatic gain control (AGC) amplifier with the sign least mean-squared (S-LMS) algorithm has been used to compensate the transmission media loss. To recover the clock signal from the input data serial and provide for the DFE and AGC, a bang-bang clock recovery (BB-CR) is adopted. A third order phase loop loek (PLL) model was proposed to predict characteristics of the BB-CR. The core has been verified by behavioral modeling in MATLAB. The results indicate that the core can meet the specifications of the backplane receiver. The DFE recovered data over a 34" FR-4 backplane has a peak-to-peak jitter of 17 ps, a horizontal eye opening of 0.87 UI, and a vertical eye opening of 500 mVpp.展开更多
Least mean square (LMS) decision feedback equalizer (DFE) is preferred as an effective solution to coping with inter-symbol interference (ISI) for ATSC digital television (DTV) receivers. In DTV transmission environme...Least mean square (LMS) decision feedback equalizer (DFE) is preferred as an effective solution to coping with inter-symbol interference (ISI) for ATSC digital television (DTV) receivers. In DTV transmission environment, echo delay often covers several hundreds symbols, which leads to very large-scale equalizer. One consequence of the large-scale equalizer is the very slow convergence, which combined with error propagation, inherent drawback of DFE, seriously deteriorates the performance of the receivers, especially in severe channels More working modes and corresponding robust control mechanism were given to help the equalizer converge to the stable state smoothly. Simulation results show that the improved equalizer can perform better, especially in the severe channels.展开更多
This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities o...This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions.展开更多
Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture...Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture is chosen according to the type of ISI produced by fixed, fast or slow fading channels. In this work, we propose a combination of two techniques in order to minimize ISI yield by fast fading channels, i.e., pulse shape filtering and ANN equalizer. Levenberg-Marquardt algorithm is used to update the synaptic weights of an ANN comprise only by two recurrent perceptrons. The proposed system outperformed more complex structures such as those based on Kalman filtering approach.展开更多
We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We ...We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We use an out-ofrange detector to detect the end of burst errors from the DFE and activate the optional TC-MLSE to correct burst errors.We conduct experiments to transmit a 201-Gbit/s PAM-8 signal.The results show that the proposed method achieves a bit error rate of 3.65×10^(-3),which is close to that of MLSE.The optional MLSE is only activated when needed and processes 11.4%of the total symbols.Moreover,the proposed method compresses the maximum length of burst errors from 19 to 5.展开更多
In this paper, a frequency domain decision feedback equalizer is proposed for single carrier transmission with time-reversal space-time block coding (TR-STBC). It is shown that the diagonal decision feedback equaliz...In this paper, a frequency domain decision feedback equalizer is proposed for single carrier transmission with time-reversal space-time block coding (TR-STBC). It is shown that the diagonal decision feedback equalizer matrix can be calculated from the frequency domain channel response. Under the perfect feedback assumption, the proposed equalizer can approach matched filter bound (MFB). Compared with the existing time domain decision feedback equalizer, the proposed equalizer exhibits better performance with the same equalization complexity.展开更多
A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performe...A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performed jointly for the layers within the same group while the Decision Feedback Equalization (DFE) is performed for groups. Based on the assumption of QPSK modulation and the quasi-static flat fading channel, simulations are made to testify the performance of the proposed algorithm. The results show that the algorithm outperforms the original V-BLAST detection dramatically in Symbol Error Probability (SEP) per- formance. Specifically, Signal-to-Noise Ratio (SNR) improvement of 3.4dB is obtained for SEP of 10?2 (4×4 case), with a reasonable complexity maintained.展开更多
Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multipl...Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.展开更多
MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective chann...MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective channels. Due to their recursive structure, these receivers may suffer from error propagation which results in an overall mean square error degradation. An MIMO-DFE based BLAST receiver with limited error propagation to combat frequencyselective channel is proposed, which employs both norm constraint on feedback filter taps and soft decision device. Simulation results show that the proposed receiver outperforms conventional ones in various frequency selective channels.展开更多
This paper presents a lOGb/s highspeed equalizer as the frontend of a receiver for backplane communication. The equalizer combines an analog equalizer and a twotap decisionfeedback equal izer in a halfrate structure t...This paper presents a lOGb/s highspeed equalizer as the frontend of a receiver for backplane communication. The equalizer combines an analog equalizer and a twotap decisionfeedback equal izer in a halfrate structure to reduce the intersymbolinterference (ISI) of the communication chan nel. By employing inductive peaking technique for the highfrequency boost circuit, the bandwidth and the boost of the analog equalizer are improved. The decisionfeedback equalizer optimizes the size of the CMLbased circuit such as D flipflops (DFF) and multiplex (MUX), shortening the feedback path delay and speeding up the operation considerably. Designed in the 0. 181μm CMOS technology, the equalizer delivers 10Gb/s data over 18in FR4 trace with 28dB loss while drawing 27mW from a 1.8V supply. The overall chip area including pads is 0. 6 -0.7mm2.展开更多
This paper presents a 0.18μm CMOS 6.25 Gb/s equalizer for high speed backplane communication. The proposed equalizer is a combined one consisting of a one-tap feed-forward equalizer (FFE) and a two-tap half-rate de...This paper presents a 0.18μm CMOS 6.25 Gb/s equalizer for high speed backplane communication. The proposed equalizer is a combined one consisting of a one-tap feed-forward equalizer (FFE) and a two-tap half-rate decision feedback equalizer (DFE) in order to cancel both pre-cursor and post-cursor ISI. By employing an active-inductive peaking circuit for the delay line, the bandwidth of the FFE is increased and the area cost is minimized. CML-based circuits such as DFFs, summers and multiplexes all help to improve the speed of DFEs. Measurement results illustrate that the equalizer operates well when equalizing 6.25 Gb/s data is passed over a 30-inch channel with a loss of 22 dB and consumes 55.8 mW with the supply voltage of 1.8 V. The overall chip area including pads is 0.3 × 0.5 mm^2.展开更多
We propose an efficient low bit error rate(BER) and low complexity multiple-input multiple-output(MIMO) multiuser detection(MUD) method for use with multiuser MIMO orthogonal frequency division multiplexing(OFDM) syst...We propose an efficient low bit error rate(BER) and low complexity multiple-input multiple-output(MIMO) multiuser detection(MUD) method for use with multiuser MIMO orthogonal frequency division multiplexing(OFDM) systems.It is a hybrid method combining a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter(MIMO MIC DFE-EFF) and a differential algorithm.The proposed method,termed 'MIMO MIC DFE-EFF with a differential algorithm' for short,has a multiuser feedback structure.We describe the schemes of MIMO MIC DFE-EFF and MIMO MIC DFE-EFF with a differential algorithm,and compare their minimum mean square error(MMSE) performance and computational complexity.Simulation results show that a significant performance gain can be achieved by employing the MIMO MIC DFE-EFF detection algorithm in the context of a multiuser MIMO-OFDM system over frequency selective Rayleigh channel.MIMO MIC DFE-EFF with the differential algorithm improves both computational efficiency and BER performance in a multistage structure relative to conventional DFE-EFF,though there is a small reduction in system performance compared with MIMO MIC DFE-EFF without the differential algorithm.展开更多
基金Supported by the High Technology Research and Development Programme of China (No. 2003AA31g030).
文摘A 6.25 Gbps SerDes core used in the high signed based on the OIF-CEI-02.0 standard. To speed backplane communication receiver has been decounteract the serious Inter-Syrmbol-Interference (ISI), the core employed a half-rate four-tap decision feedback equalizer (DFE). The equalizer used the Signsign least mean-squared (SS-LMS) algorithm to realize the coefficient adaptation. An automatic gain control (AGC) amplifier with the sign least mean-squared (S-LMS) algorithm has been used to compensate the transmission media loss. To recover the clock signal from the input data serial and provide for the DFE and AGC, a bang-bang clock recovery (BB-CR) is adopted. A third order phase loop loek (PLL) model was proposed to predict characteristics of the BB-CR. The core has been verified by behavioral modeling in MATLAB. The results indicate that the core can meet the specifications of the backplane receiver. The DFE recovered data over a 34" FR-4 backplane has a peak-to-peak jitter of 17 ps, a horizontal eye opening of 0.87 UI, and a vertical eye opening of 500 mVpp.
基金The National Natural Science Foundation of China (No. 603320307)
文摘Least mean square (LMS) decision feedback equalizer (DFE) is preferred as an effective solution to coping with inter-symbol interference (ISI) for ATSC digital television (DTV) receivers. In DTV transmission environment, echo delay often covers several hundreds symbols, which leads to very large-scale equalizer. One consequence of the large-scale equalizer is the very slow convergence, which combined with error propagation, inherent drawback of DFE, seriously deteriorates the performance of the receivers, especially in severe channels More working modes and corresponding robust control mechanism were given to help the equalizer converge to the stable state smoothly. Simulation results show that the improved equalizer can perform better, especially in the severe channels.
文摘This work proposes an improved inertia weight update method and position update method in Particle Swarm Optimization (PSO) to enhance the convergence and mean square error of channel equalizer. The search abilities of PSO are managed by the key parameter Inertia Weight (IW). A higher value leads to global search whereas a smaller value shifts the search to local which makes convergence faster. Different approaches are reported in literature to improve PSO by modifying inertia weight. This work investigates the performance of the existing PSO variants related to time varying inertia weight methods and proposes new strategies to improve the convergence and mean square error of channel equalizer. Also the position update method in PSO is modified to achieve better convergence in channel equalization. The simulation presents the enhanced performance of the proposed techniques in transversal and decision feedback models. The simulation results also analyze the superiority in linear and nonlinear channel conditions.
文摘Artificial Neural Network (ANN) equalizers have been successfully applied to mitigate Inter symbolic Interference (ISI) due to distortions introduced by linear or nonlinear communication channels. The ANN architecture is chosen according to the type of ISI produced by fixed, fast or slow fading channels. In this work, we propose a combination of two techniques in order to minimize ISI yield by fast fading channels, i.e., pulse shape filtering and ANN equalizer. Levenberg-Marquardt algorithm is used to update the synaptic weights of an ANN comprise only by two recurrent perceptrons. The proposed system outperformed more complex structures such as those based on Kalman filtering approach.
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Nos.62301128,61871082,and 62111530150)the Open Fund of IPOC(BUPT)(No.IPOC2020A011)+1 种基金the STCSM(No.SKLSFO2021-01)the Fundamental Research Funds for the Central Universities(Nos.ZYGX2020ZB043 and ZYGX2019J008).
文摘We propose a trellis-compressed maximum likelihood sequence estimation(TC-MLSE)-assisted sliding-block decision feedback equalizer(DFE)to suppress the error propagation resulting from the DFE in high-speed systems.We use an out-ofrange detector to detect the end of burst errors from the DFE and activate the optional TC-MLSE to correct burst errors.We conduct experiments to transmit a 201-Gbit/s PAM-8 signal.The results show that the proposed method achieves a bit error rate of 3.65×10^(-3),which is close to that of MLSE.The optional MLSE is only activated when needed and processes 11.4%of the total symbols.Moreover,the proposed method compresses the maximum length of burst errors from 19 to 5.
基金supported by the National Basic Research Program of China (2009CB320401)the National Key Scientific and Technological Project of China (2010ZX03003-001,2010ZX03003-003-01)+2 种基金the Research Funds for Doctoral Program of Higher Education of China (20090005110003)the National Natural Science Foundation of China (60902048)the Fundamental Research Funds for the Central Universities (2010PTB-03-04 G470220)
文摘In this paper, a frequency domain decision feedback equalizer is proposed for single carrier transmission with time-reversal space-time block coding (TR-STBC). It is shown that the diagonal decision feedback equalizer matrix can be calculated from the frequency domain channel response. Under the perfect feedback assumption, the proposed equalizer can approach matched filter bound (MFB). Compared with the existing time domain decision feedback equalizer, the proposed equalizer exhibits better performance with the same equalization complexity.
基金Supported by the National Natural Science Foundation of China (No.60172029).
文摘A decoding method complemented by Maximum Likelihood (ML) detection for V-BLAST (Verti- cal Bell Labs Layered Space-Time) system is presented. The ranked layers are divided into several groups. ML decoding is performed jointly for the layers within the same group while the Decision Feedback Equalization (DFE) is performed for groups. Based on the assumption of QPSK modulation and the quasi-static flat fading channel, simulations are made to testify the performance of the proposed algorithm. The results show that the algorithm outperforms the original V-BLAST detection dramatically in Symbol Error Probability (SEP) per- formance. Specifically, Signal-to-Noise Ratio (SNR) improvement of 3.4dB is obtained for SEP of 10?2 (4×4 case), with a reasonable complexity maintained.
基金Supported by the National Natural Science Foundation of China (Nos. 11274259, 11574258) and the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing, the Minister of Educat on (Southeast Un versity) (No. UASP1305).
文摘Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.
文摘MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective channels. Due to their recursive structure, these receivers may suffer from error propagation which results in an overall mean square error degradation. An MIMO-DFE based BLAST receiver with limited error propagation to combat frequencyselective channel is proposed, which employs both norm constraint on feedback filter taps and soft decision device. Simulation results show that the proposed receiver outperforms conventional ones in various frequency selective channels.
基金Supported by the National High Technology Research and Development Programme of China(No.2011AA10305)
文摘This paper presents a lOGb/s highspeed equalizer as the frontend of a receiver for backplane communication. The equalizer combines an analog equalizer and a twotap decisionfeedback equal izer in a halfrate structure to reduce the intersymbolinterference (ISI) of the communication chan nel. By employing inductive peaking technique for the highfrequency boost circuit, the bandwidth and the boost of the analog equalizer are improved. The decisionfeedback equalizer optimizes the size of the CMLbased circuit such as D flipflops (DFF) and multiplex (MUX), shortening the feedback path delay and speeding up the operation considerably. Designed in the 0. 181μm CMOS technology, the equalizer delivers 10Gb/s data over 18in FR4 trace with 28dB loss while drawing 27mW from a 1.8V supply. The overall chip area including pads is 0. 6 -0.7mm2.
文摘This paper presents a 0.18μm CMOS 6.25 Gb/s equalizer for high speed backplane communication. The proposed equalizer is a combined one consisting of a one-tap feed-forward equalizer (FFE) and a two-tap half-rate decision feedback equalizer (DFE) in order to cancel both pre-cursor and post-cursor ISI. By employing an active-inductive peaking circuit for the delay line, the bandwidth of the FFE is increased and the area cost is minimized. CML-based circuits such as DFFs, summers and multiplexes all help to improve the speed of DFEs. Measurement results illustrate that the equalizer operates well when equalizing 6.25 Gb/s data is passed over a 30-inch channel with a loss of 22 dB and consumes 55.8 mW with the supply voltage of 1.8 V. The overall chip area including pads is 0.3 × 0.5 mm^2.
基金supported by the National Science and Technology Pillar Program (Nos 2008BAH30B12 and 2008BAH30B09)the Important National Science and Technology Specific Projects (Nos 2008ZX 03003-004, 2009ZX03003-008, 2009ZX03003-009, and 2009ZX 03002-009)+1 种基金the National Natural Science Foundation of China (No 60802009)the National High-Tech R & D Program (863) of China (Nos 2008AA01Z204 and 2009AA01Z205)
文摘We propose an efficient low bit error rate(BER) and low complexity multiple-input multiple-output(MIMO) multiuser detection(MUD) method for use with multiuser MIMO orthogonal frequency division multiplexing(OFDM) systems.It is a hybrid method combining a multiuser-interference-cancellation-based decision feedback equalizer using error feedback filter(MIMO MIC DFE-EFF) and a differential algorithm.The proposed method,termed 'MIMO MIC DFE-EFF with a differential algorithm' for short,has a multiuser feedback structure.We describe the schemes of MIMO MIC DFE-EFF and MIMO MIC DFE-EFF with a differential algorithm,and compare their minimum mean square error(MMSE) performance and computational complexity.Simulation results show that a significant performance gain can be achieved by employing the MIMO MIC DFE-EFF detection algorithm in the context of a multiuser MIMO-OFDM system over frequency selective Rayleigh channel.MIMO MIC DFE-EFF with the differential algorithm improves both computational efficiency and BER performance in a multistage structure relative to conventional DFE-EFF,though there is a small reduction in system performance compared with MIMO MIC DFE-EFF without the differential algorithm.