Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)oper...Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.展开更多
The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and con...The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and contributes to stable and healthy market growth.This study investigated the characteristics of electricity markets in different provinces and synthesized a comprehensive set of evaluation indicators to assess market effectiveness.The evaluation framework,comprising nine indicators organized into two tiers,was constructed based on three aspects:market design,market efficiency,and developmental coordination.Furthermore,a novel fuzzy multi-criteria decision-making evaluation model for electricity market performance was developed based on the Fuzzy-BWM and fuzzy COPRAS methodologies.This model aimed to ensure both accuracy and comprehensiveness in market operation assessment.Subsequently,empirical analyses were conducted on four typical provincial-level electricity markets in China.The results indicate that Guangdong’s electricity market performed best because of its effective balance of stakeholder interests and adherence to contractual integrity principles.Zhejiang and Shandong ranked second and third,respectively,whereas Sichuan exhibited the poorest market performance.Sichuan’s electricity market must be improved in terms of market design,such that market players can obtain a fairly competitive environment.The sensitivity analysis of the constructed indicators verified the effectiveness of the evaluation model proposed in this study.Finally,policy recommendations were proposed to facilitate the sustainable development of China’s electricity markets with the objective of transforming them into efficient and secure markets adaptable to the evolution of novel power systems.展开更多
Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on m...Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.展开更多
The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variable...The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variables(TFLV), is studied. The formula of the degree of possibility between two TFLVs is defined, and some of its characteristics are studied. Based on the degree of possibility of fuzzy linguistic variables, an approach to ranking the decision alternatives in multiple attribute decision making with TFLV is developed. The trapezoid fuzzy linguistic weighted averaging (TFLWA) operator method is utilized to aggregate the decision information, and then all the alternatives are ranked by comparing the degree of possibility of TFLV. The method can carry out linguistic computation processes easily without loss of linguistic information, and thus makes the decision results reasonable and effective. Finally, the implementation process of the proposed method is illustrated and analyzed by a practical example.展开更多
The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we foun...The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we found some defects of the method and pointed out these defects. To overcome these defects we absorbed the spirit and exploited concepts of evaluation criterion and the fault measure of evaluation criterion. We proposed and applied a method with an evaluation criterion, after which we also p...展开更多
In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the...In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.展开更多
A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole infor...A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.展开更多
[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among a...[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.展开更多
In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung n...In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.展开更多
Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors ...Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors propose a transformer‐based Mahjong AI(Tjong)via hierarchical decision‐making.By utilising self‐attention mechanisms,Tjong effectively captures tile patterns and game dynamics,and it decouples the decision pro-cess into two distinct stages:action decision and tile decision.This design reduces de-cision complexity considerably.Additionally,a fan backward technique is proposed to address the sparse rewards by allocating reversed rewards for actions based on winning hands.Tjong consists of 15M parameters and is trained using approximately 0.5 M data over 7 days of supervised learning on a single server with 2 GPUs.The action decision achieved an accuracy of 94.63%,while the claim decision attained 98.55%and the discard decision reached 81.51%.In a tournament format,Tjong outperformed AIs(CNN,MLP,RNN,ResNet,VIT),achieving scores up to 230%higher than its opponents.Further-more,after 3 days of reinforcement learning training,it ranked within the top 1%on the leaderboard on the Botzone platform.展开更多
The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support ...The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method.展开更多
With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that consid...With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.展开更多
Background:Shared decision-making(SDM)implementation is a priority for Australian health systems,including general practices but it remains complex for specific groups like older rural Australians.We initiated a quali...Background:Shared decision-making(SDM)implementation is a priority for Australian health systems,including general practices but it remains complex for specific groups like older rural Australians.We initiated a qualitative study with older rural Australians to explore barriers to and facilitators of SDM in local general practices.Methods:We conducted a patient-oriented research,partnering with older rural Australians,families,and health service providers in research design.Participants who visited general practices were purposively sampled from five small rural towns in South Australia.A semi-structured interview guide was used for interviews and reflexive thematic coding was conducted.Results:Telephone interviews were held with 27 participants.Four themes were identified around older rural adults’involvement in SDM:(1)Understanding of"patient involvement";(2)Positive and negative outcomes;(3)Barriers to SDM;and(4)Facilitators to SDM.Understanding of patient involvement in SDM considerably varied among participants,with some reporting their involvement was contingent on the“opportunity to ask questions”and the“treatment choices”offered to them.Alongside the opportunity for involvement,barriers such as avoidance of cultural care and a lack of continuity of care are new findings.Challenges encountered in SDM implementation also included resource constraints and time limitations in general practices.Rural knowledge of general practitioners and technology integration in consultations were viewed as potential enablers..Conclusion:Adequate resources and well-defined guidelines about the process should accompany the implementation of SDM in rural general practices of South Australia.Innovative strategies by general practitioners promoting health literacy and culturally-tailored communication approaches could increase older rural Australians'involvement in general.展开更多
Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper...Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper treatment all contribute to decision-making errors.Clinician-related factors such as fatigue,cognitive overload,and inexperience further interfere with effective decision-making.Cognitive science has provided insight into the clinical decision-making process that can be used to reduce error.This evidence-based review discusses ten common misconceptions regarding critical care decision-making.By understanding how practitioners make clinical decisions and examining how errors occur,strategies may be developed and implemented to decrease errors in Decision-making and improve patient outcomes.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indi...In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.展开更多
This paper takes the synthesizing evaluation about industrial economic benefits by examples and proposes a new method named maximizing deviation method for multiindices decision. The new method can automatically deter...This paper takes the synthesizing evaluation about industrial economic benefits by examples and proposes a new method named maximizing deviation method for multiindices decision. The new method can automatically determine the weight coefficients among the multiindices and also can obtain the exact and reliable evaluation results without subjectivity.展开更多
With respect to the multiple attribute decision making problems with linguistic preference relations on alternatives in the form of incomplete linguistic judgment matrix, a method is proposed to analyze the decision p...With respect to the multiple attribute decision making problems with linguistic preference relations on alternatives in the form of incomplete linguistic judgment matrix, a method is proposed to analyze the decision problem. The incomplete linguistic judgment matrix is transformed into incomplete fuzzy judgment matrix and an optimization model is developed on the basis of incomplete fuzzy judgment matrix provided by the decision maker and the decision matrix to determine attribute weights by Lagrange multiplier method. Then the overall values of all alternatives are calculated to rank them. A numerical example is given to illustrate the feasibility and practicality of the proposed method.展开更多
An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this pap...An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this paper,which include interval number,real number and uncertain linguistic value.A kind of hybrid multi-attribute decision making method for the single pro- duction process job scheduling is presented in this paper,that the parts are firstly sorted about each factor,and then the total evalu- ative attributive value of each part is calculated with the method of weighted arithmetic average,and thus the part with the highest total evaluative attributive value is chosen for being processed firstly.The mathematic model corresponding to the method is set up in this paper.An example is studied in this paper,and the results of the example testify the correctness of this model.展开更多
A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this ...A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this kind of problem. Secondly, a con- crete method corresponding to this kind of problem is proposed. The main tool of our research is the technique o~ the jackknife method. The main advantage of the new method is that it can identify and determine the reliability degree of the existed decision making information. Finally, a traffic engineering example is given to show the effectiveness of the new method.展开更多
基金supported by the Natural Science Foundation of Hunan Province(2023JJ50047,2023JJ40306)the Research Foundation of Education Bureau of Hunan Province(23A0494,20B260)the Key R&D Projects of Hunan Province(2019SK2331)。
文摘Aiming at the triangular fuzzy(TF)multi-attribute decision making(MADM)problem with a preference for the distribution density of attribute(DDA),a decision making method with TF number two-dimensional density(TFTD)operator is proposed based on the density operator theory for the decision maker(DM).Firstly,a simple TF vector clustering method is proposed,which considers the feature of TF number and the geometric distance of vectors.Secondly,the least deviation sum of squares method is used in the program model to obtain the density weight vector.Then,two TFTD operators are defined,and the MADM method based on the TFTD operator is proposed.Finally,a numerical example is given to illustrate the superiority of this method,which can not only solve the TF MADM problem with a preference for the DDA but also help the DM make an overall comparison.
文摘The evaluation of the electricity market is crucial for fostering market construction and development.An accurate assessment of the electricity market reveals developmental trends,identifies operational issues,and contributes to stable and healthy market growth.This study investigated the characteristics of electricity markets in different provinces and synthesized a comprehensive set of evaluation indicators to assess market effectiveness.The evaluation framework,comprising nine indicators organized into two tiers,was constructed based on three aspects:market design,market efficiency,and developmental coordination.Furthermore,a novel fuzzy multi-criteria decision-making evaluation model for electricity market performance was developed based on the Fuzzy-BWM and fuzzy COPRAS methodologies.This model aimed to ensure both accuracy and comprehensiveness in market operation assessment.Subsequently,empirical analyses were conducted on four typical provincial-level electricity markets in China.The results indicate that Guangdong’s electricity market performed best because of its effective balance of stakeholder interests and adherence to contractual integrity principles.Zhejiang and Shandong ranked second and third,respectively,whereas Sichuan exhibited the poorest market performance.Sichuan’s electricity market must be improved in terms of market design,such that market players can obtain a fairly competitive environment.The sensitivity analysis of the constructed indicators verified the effectiveness of the evaluation model proposed in this study.Finally,policy recommendations were proposed to facilitate the sustainable development of China’s electricity markets with the objective of transforming them into efficient and secure markets adaptable to the evolution of novel power systems.
文摘Real estate has been a dominant industry in many countries. One problem for real estate companies is determining the most valuable area before starting a new project. Previous studies on this issue mainly focused on market needs and economic prospects, ignoring the impact of natural disasters. We observe that natural disasters are important for real estate area selection because they will introduce considerable losses to real estate enterprises. Following this observation, we first develop a self-defined new indicator named Average Loss Ratio to predict the losses caused by natural disasters in an area. Then, we adopt the existing ARIMA model to predict the Average Loss Ratio of an area. After that, we propose to integrate the TOPSIS model and the Grey Prediction Model to rank the recommendation levels for candidate areas, thereby assisting real estate companies in their decision-making process. We conduct experiments on real datasets to validate our proposal, and the results suggest the effectiveness of the proposed method.
基金2008 Soft Science Program of Jiangsu Science and Technology Department (No.BR2008098)
文摘The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variables(TFLV), is studied. The formula of the degree of possibility between two TFLVs is defined, and some of its characteristics are studied. Based on the degree of possibility of fuzzy linguistic variables, an approach to ranking the decision alternatives in multiple attribute decision making with TFLV is developed. The trapezoid fuzzy linguistic weighted averaging (TFLWA) operator method is utilized to aggregate the decision information, and then all the alternatives are ranked by comparing the degree of possibility of TFLV. The method can carry out linguistic computation processes easily without loss of linguistic information, and thus makes the decision results reasonable and effective. Finally, the implementation process of the proposed method is illustrated and analyzed by a practical example.
文摘The presently existing decision making method for problem of goal type, i.e. the goal programming, is popular to some extent. In this paper we analyzed the features of the problem and the method,based on which we found some defects of the method and pointed out these defects. To overcome these defects we absorbed the spirit and exploited concepts of evaluation criterion and the fault measure of evaluation criterion. We proposed and applied a method with an evaluation criterion, after which we also p...
文摘In this paper, for multi objective decision making, the defects on the commonly used interactive methods based on the satisfactoriness criterion is studied. Then a class of two stage interactive method based on the satisfactoriness criterion is proposed for improvement with the satisfactoriness criterion being determined through the collection of the decision makers preference information. An application example is presented for illustration of applicability of the method.
文摘A class of interactive multi objective decision making method by means of evaluation criterion is proposed for problems with linear value function,in which case,the decision maker(DM) usually has only unwhole information of weights for objectives. The concept of fault measure of the evaluation criterion is proposed to measure the deviation of the evaluation criterion from the DMs preference structure.The approach to obtain an upper boundary of fault measure of an evaluation criterion,and the approach to modify the evaluation criterion to be one with smaller fault measure,and the approach to obtain a pre optimized objective set by evaluation criterion with certain fault measure are also proposed.
基金Supported by the Science Research and Development Project of Nanning City(201002030B)~~
文摘[Objective]The aim was to establish a multi-attribute decision making method and introduce its application in rice breeding.[Method]Based on the defined closeness degree among attributes,the difference degrees among attributes were discussed.Furthermore,the weights of attributes were determined based on the difference degrees among the attributes.[Result]A multi-attribute decision making method based on difference degrees among attributes was established,the feasibility of applying it in rice breeding was also analyzed.[Conclusion]This study enriched the methods to determine attribute weights in multi-attribute decision making and provided the necessary theoretical support for selecting rice varieties scientifically and rationally.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)Korea Institute for Advancement of Technology(KIAT)Grant funded by the Korea government(MOTIE)(P0012724)The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In this article,multiple attribute decision-making problems are solved using the vague normal set(VNS).It is possible to generalize the vague set(VS)and q-rung fuzzy set(FS)into the q-rung vague set(VS).A log q-rung normal vague weighted averaging(log q-rung NVWA),a log q-rung normal vague weighted geometric(log q-rung NVWG),a log generalized q-rung normal vague weighted averaging(log Gq-rung NVWA),and a log generalized q-rungnormal vagueweightedgeometric(logGq-rungNVWG)operator are discussed in this article.Adescription is provided of the scoring function,accuracy function and operational laws of the log q-rung VS.The algorithms underlying these functions are also described.A numerical example is provided to extend the Euclidean distance and the Humming distance.Additionally,idempotency,boundedness,commutativity,and monotonicity of the log q-rung VS are examined as they facilitate recognizing the optimal alternative more quickly and help clarify conceptualization.We chose five anemia patients with four types of symptoms including seizures,emotional shock or hysteria,brain cause,and high fever,who had either retrograde amnesia,anterograde amnesia,transient global amnesia,post-traumatic amnesia,or infantile amnesia.Natural numbers q are used to express the results of the models.To demonstrate the effectiveness and accuracy of the models we are investigating,we compare several existing models with those that have been developed.
基金National Natural Science Foundation of China,Grant/Award Numbers:62276285,62236011Major Project of National Social Sciences Foundation of China,Grant/Award Number:20&ZD279。
文摘Mahjong,a complex game with hidden information and sparse rewards,poses significant challenges.Existing Mahjong AIs require substantial hardware resources and extensive datasets to enhance AI capabilities.The authors propose a transformer‐based Mahjong AI(Tjong)via hierarchical decision‐making.By utilising self‐attention mechanisms,Tjong effectively captures tile patterns and game dynamics,and it decouples the decision pro-cess into two distinct stages:action decision and tile decision.This design reduces de-cision complexity considerably.Additionally,a fan backward technique is proposed to address the sparse rewards by allocating reversed rewards for actions based on winning hands.Tjong consists of 15M parameters and is trained using approximately 0.5 M data over 7 days of supervised learning on a single server with 2 GPUs.The action decision achieved an accuracy of 94.63%,while the claim decision attained 98.55%and the discard decision reached 81.51%.In a tournament format,Tjong outperformed AIs(CNN,MLP,RNN,ResNet,VIT),achieving scores up to 230%higher than its opponents.Further-more,after 3 days of reinforcement learning training,it ranked within the top 1%on the leaderboard on the Botzone platform.
文摘The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method.
基金The work was supported by Humanities and Social Sciences Fund of the Ministry of Education(No.22YJA630119)the National Natural Science Foundation of China(No.71971051)Natural Science Foundation of Hebei Province(No.G2021501004).
文摘With the development of big data and social computing,large-scale group decisionmaking(LGDM)is nowmerging with social networks.Using social network analysis(SNA),this study proposes an LGDM consensus model that considers the trust relationship among decisionmakers(DMs).In the process of consensusmeasurement:the social network is constructed according to the social relationship among DMs,and the Louvain method is introduced to classify social networks to form subgroups.In this study,the weights of each decision maker and each subgroup are computed by comprehensive network weights and trust weights.In the process of consensus improvement:A feedback mechanism with four identification and two direction rules is designed to guide the consensus of the improvement process.Based on the trust relationship among DMs,the preferences are modified,and the corresponding social network is updated to accelerate the consensus.Compared with the previous research,the proposedmodel not only allows the subgroups to be reconstructed and updated during the adjustment process,but also improves the accuracy of the adjustment by the feedbackmechanism.Finally,an example analysis is conducted to verify the effectiveness and flexibility of the proposed method.Moreover,compared with previous studies,the superiority of the proposed method in solving the LGDM problem is highlighted.
基金financed by the Flinders University College of Business,Government and Law Large Project Grant(Grant number:100031.21).
文摘Background:Shared decision-making(SDM)implementation is a priority for Australian health systems,including general practices but it remains complex for specific groups like older rural Australians.We initiated a qualitative study with older rural Australians to explore barriers to and facilitators of SDM in local general practices.Methods:We conducted a patient-oriented research,partnering with older rural Australians,families,and health service providers in research design.Participants who visited general practices were purposively sampled from five small rural towns in South Australia.A semi-structured interview guide was used for interviews and reflexive thematic coding was conducted.Results:Telephone interviews were held with 27 participants.Four themes were identified around older rural adults’involvement in SDM:(1)Understanding of"patient involvement";(2)Positive and negative outcomes;(3)Barriers to SDM;and(4)Facilitators to SDM.Understanding of patient involvement in SDM considerably varied among participants,with some reporting their involvement was contingent on the“opportunity to ask questions”and the“treatment choices”offered to them.Alongside the opportunity for involvement,barriers such as avoidance of cultural care and a lack of continuity of care are new findings.Challenges encountered in SDM implementation also included resource constraints and time limitations in general practices.Rural knowledge of general practitioners and technology integration in consultations were viewed as potential enablers..Conclusion:Adequate resources and well-defined guidelines about the process should accompany the implementation of SDM in rural general practices of South Australia.Innovative strategies by general practitioners promoting health literacy and culturally-tailored communication approaches could increase older rural Australians'involvement in general.
文摘Diagnostic errors are prevalent in critical care practice and are associated with patient harm and costs for providers and the healthcare system.Patient complexity,illness severity,and the urgency in initiating proper treatment all contribute to decision-making errors.Clinician-related factors such as fatigue,cognitive overload,and inexperience further interfere with effective decision-making.Cognitive science has provided insight into the clinical decision-making process that can be used to reduce error.This evidence-based review discusses ten common misconceptions regarding critical care decision-making.By understanding how practitioners make clinical decisions and examining how errors occur,strategies may be developed and implemented to decrease errors in Decision-making and improve patient outcomes.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金Project(50774095) supported by the National Natural Science Foundation of ChinaProject(200449) supported by the National Outstanding Doctoral Dissertations Special Funds of China
文摘In the case of unknown weights, theories of multi-attributed decision making based on interval numbers and grey related analysis were used to optimize mining methods. As the representative of independence for the indicator, the smaller the correlation of indicators is, the greater the weight is. Hence, the weights of interval numbers of indicators were determined by using correlation coefficient. Relative closeness based on positive and negative ideal methods was calculated by introducing distance between interval numbers, which made decision making more rational and comprehensive. A new method of ranking interval numbers based on normal distribution was proposed for the optimization of mining methods, whose basic properties were discussed. Finally, the feasibility and effectiveness of this method were verified by theories and practice.
文摘This paper takes the synthesizing evaluation about industrial economic benefits by examples and proposes a new method named maximizing deviation method for multiindices decision. The new method can automatically determine the weight coefficients among the multiindices and also can obtain the exact and reliable evaluation results without subjectivity.
基金the National Natural Science Foundation of China (70701008)National Science Foundationfor Distinguished Young Scholars of China (70525002)
文摘With respect to the multiple attribute decision making problems with linguistic preference relations on alternatives in the form of incomplete linguistic judgment matrix, a method is proposed to analyze the decision problem. The incomplete linguistic judgment matrix is transformed into incomplete fuzzy judgment matrix and an optimization model is developed on the basis of incomplete fuzzy judgment matrix provided by the decision maker and the decision matrix to determine attribute weights by Lagrange multiplier method. Then the overall values of all alternatives are calculated to rank them. A numerical example is given to illustrate the feasibility and practicality of the proposed method.
基金Supported by the key project of science and technology plan in the Guangxi Zhuang Autonomous Region China(0630005-8)
文摘An analysis of the key factors affecting on the single production process job scheduling of the parts waiting for be- ing processed on the key equipments for SMEs (Small Manufacturing Enterprises) is given in this paper,which include interval number,real number and uncertain linguistic value.A kind of hybrid multi-attribute decision making method for the single pro- duction process job scheduling is presented in this paper,that the parts are firstly sorted about each factor,and then the total evalu- ative attributive value of each part is calculated with the method of weighted arithmetic average,and thus the part with the highest total evaluative attributive value is chosen for being processed firstly.The mathematic model corresponding to the method is set up in this paper.An example is studied in this paper,and the results of the example testify the correctness of this model.
基金supported by the National Key Basic Research Program of China(973 Program)(2012CB725402)the National High-Tech R&D Program of China(863 Program)(SS2014AA110303)the Science Foundation for Post-doctoral Scientists of Jiangsu Province(1301011A)
文摘A kind of multiple attribute group decision making (MAGDM) problem is discussed from the perspective of statistic decision-making. Firstly, on the basis of the stability theory, a new idea is proposed to solve this kind of problem. Secondly, a con- crete method corresponding to this kind of problem is proposed. The main tool of our research is the technique o~ the jackknife method. The main advantage of the new method is that it can identify and determine the reliability degree of the existed decision making information. Finally, a traffic engineering example is given to show the effectiveness of the new method.