Decision-making is the process of deciding between two or more options in order to take the most appropriate and successful course of action in order to achieve sustainable mangrove management. However, the distinctiv...Decision-making is the process of deciding between two or more options in order to take the most appropriate and successful course of action in order to achieve sustainable mangrove management. However, the distinctiveness of mangrove as an ecosystem, and thus the attendant socio-economic and governance ramifications, causes the idea of decision making to become relatively distinct from other decision making process As a result, the purpose of this research was to evaluate the impact that community engagement plays in the decision-making process as it relates to the establishment of governance norms for sustainable mangrove management in Lamu County. In this study, a correlational research design was applied, and the researchers employed a mixed techniques approach. The target population was 296 respondents. The research used questionnaires and interviews to collect data. A descriptive statistical technique was utilized to perform an inspection and analysis on the data that was gathered. The findings indicated that having awareness about governance standards is beneficial during the process of making decisions. In addition, the findings demonstrated that respondents had the impression that the decision-making process was not done properly. On the other hand, the participants pointed out the positive aspects of the decision-making process and agreed that the participation of both gender was essential for the sustainable management of mangroves. Based on these data, it appeared that full community engagement in decision-making is necessary for sustainable management of mangrove forests.展开更多
The design process of the built environment relies on the collaborative effort of all parties involved in the project.During the design phase,owners,end users,and their representatives are expected to make the most cr...The design process of the built environment relies on the collaborative effort of all parties involved in the project.During the design phase,owners,end users,and their representatives are expected to make the most critical design and budgetary decisions-shaping the essential traits of the project,hence emerge the need and necessity to create and integrate mechanisms to support the decision-making process.Design decisions should not be based on assumptions,past experiences,or imagination.An example of the numerous problems that are a result of uninformed design decisions is“change orders”,known as the deviation from the original scope of work,which leads to an increase of the overall cost,and changes to the construction schedule of the project.The long-term aim of this inquiry is to understand the user’s behavior,and establish evidence-based control measures,which are actions and processes that can be implemented in practice to decrease the volume and frequency of the occurrence of change orders.The current study developed a foundation for further examination by proposing potential control measures,and testing their efficiency,such as integrating Virtual Reality(VR).The specific aim was to examine the effect of different visualization methods(i.e.,VR vs.construction drawings)on,(1)how well the subjects understand the information presented about the future/planned environment;(2)the subjects’perceived confidence in what the future environment will look like;(3)the likelihood of changing the built environment;(4)design review time;and(5)accuracy in reviewing and understanding the design.展开更多
The aim of this paper is to present and analyze the factors, motivations and criteria considered in the decision-making processes of the actors belonging to the biodiesel production chain in Brazil. The biodiesel prod...The aim of this paper is to present and analyze the factors, motivations and criteria considered in the decision-making processes of the actors belonging to the biodiesel production chain in Brazil. The biodiesel production chain consists of three main agents: the farmers, the soybean processing plants and the oil refinery/distributor. For the farmers organized in cooperatives the central decision is whether to sell oil-bearing crops for the production of biodiesel. In contrast, for the soybean processing plants that convert the crops into vegetable and/or biodiesel, the decision to produce this fuel is based on the wish to expand their market portfolio. Government tax incentives strongly influence both decisions regarding which oil-bearing crop to use and the amount of vegetable oil to be transformed into biodiesel. Finally, the oil refinery/distributor is obliged by law to mix the biodiesel with the mineral diesel and perceives this as a liability. The results show the existence of different characteristics linked to the decision-making process and a significant lack of synchronicity in the aims and motivations behind the agents' decisions. This state of decisional misalignment leads to heightened uncertainty regarding the sustainability of the Brazilian biodiesel production program.展开更多
Using an analytical narrative approach to understand policy change, this paper explores the Brazilian government decision to create a digital TV policy initiating major reforms in this sector. The analysis is centered...Using an analytical narrative approach to understand policy change, this paper explores the Brazilian government decision to create a digital TV policy initiating major reforms in this sector. The analysis is centered on the actors, preferences, and choices. The article is divided into three parts: (1) We address the historical institutionalism assumptions; (2) We focus on the politics of digital TV policy in Brazil; and (3) The results are highlighted, and "winners" and "losers" are identified. Actors, preferences, and choices are historically observed and related to the government decision about rules of digital TV exploitation. It provides configurational evidence that makes it possible to associate major changes to two presidential decrees (n° 4.901/2003 and n° 5.820/2006) that reflect the preferences and behavior of the main actor (broadcasters, social movements, and federal government) around the new digital TV issues. The Brazilian case shows an institutional model in which federal government's decisions are strongly connected with the preferences of the actor broadcasters and goes against the actor social movements.展开更多
Community participation and community based management are topical themes in current policy and discussion revolving around decision-making processes especially those dealing with natural resources management.This rev...Community participation and community based management are topical themes in current policy and discussion revolving around decision-making processes especially those dealing with natural resources management.This review shows that while governments have accepted the need to either cede or devolve control and management of natural resources to the local communities,the communities are not part and parcel of the planning and budgeting which are crucial in decisionmaking.Communities were seen to be more involved in the implementation of natural resource management programs but lacked ownership of the projects.This causes lack of commitment to the programs and at times hostile reaction from the communities.The communities are always at the receiving end when it pertains to losses in the exchange.Community participation was shown to be effective when the local population is involved not as co-operating users but as natural resource managers or owner managers.展开更多
The study determined the roles of agricultural extension in hybrid rice technology decision-making process by extension agents,Nay Pyi Taw,Myanmar.The specific objectives were:to study personal characteristics of agri...The study determined the roles of agricultural extension in hybrid rice technology decision-making process by extension agents,Nay Pyi Taw,Myanmar.The specific objectives were:to study personal characteristics of agricultural extension agents,experiences and their roles,to identify extension agents’opinion on hybrid rice technology decision-making process,and to determine relationship between the roles of agricultural extension agents and decision-making process of hybrid rice production.One hundred and eight extension agents were collected who were working in Department of Agriculture,Nay Pyi Taw area and surveyed and interviewed by questionnaires.The study revealed that majority of agricultural extension agents(65.7%)were female staffs and most of extension agents(40.7%)were under 30 years as young staffs.Majority of extension agents(81.5%)were educated only Agri-Diploma.More than half(54.6%)had one to five-year experiences in employment and 58.3%had no hybrid rice training experience and source of information regarding the hybrid rice production was received 63.9%from Department of Agriculture(DOA).Study found that there was highly significant relationship between most of the roles of agricultural extension agents and hybrid rice technology decision-making process of stages 4 and 5.And then most of the extension agents’roles singnificantly related with stage 2 except role of conducting introduction of hybrid seeds and distribution through by Seed Co.Ltds which was highly significant.Beside,most of the roles of extension agents significantly related with stage 3.However stages 1 and 6 were no singnificantly related.Finally above all,a well structure seed business,Good Agricultural Practices and farm level mechanization and quality extension service are very important to increase the adoption of hybrid rice in Myanmar.展开更多
I the context of the Corporate Governance Code enactment in Japan, we examine how newly introduced outside directors in Japanese boards obtain information to take part in the decision-making process. We conducted a sy...I the context of the Corporate Governance Code enactment in Japan, we examine how newly introduced outside directors in Japanese boards obtain information to take part in the decision-making process. We conducted a systematic review of the literature and found 18 peer-reviewed publications in a time span between 2000 and 2016 that described the asymmetry of information between the insider group of board directors (including the CEO) and the outside board members. Our fmdings show that for the course of more than a decade, despite all changes and reforms, the role of board directors, whether insiders or outsiders, is still supplementary. They are treated more as advisors than active part in the decision-making process. We reveal different insider sources of information as forming social ties with the CEO and/or inside board directors and collaboration with Audit & Supervisory Board (Kansayaku), which can help reduce this asymmetry and improve the decision-making process. We assume that it will be easier for the outsiders to establish contacts and form social ties with the Audit & Supervisory Board members because of their unspoken lower status and thus to obtain more information about the company internal affairs and discussions that take place during the informal meetings, where only insiders (including the CEO) are present.展开更多
Objective: Up to 40% of women over 70 years with primary operable breast cancer in the UK are treated with primary endocrine therapy(PET) as an alternative to surgery. A variety of factors are important in determining...Objective: Up to 40% of women over 70 years with primary operable breast cancer in the UK are treated with primary endocrine therapy(PET) as an alternative to surgery. A variety of factors are important in determining treatment for older breast cancer patients. This study aimed to identify the patient and tumor factors associated with treatment allocation in this population.Methods: Prospectively collected data on treatment received(surgery vs. PET) were analysed with multivariable logistic regression using the variables age, modified Charlson Comorbidity Index(CCI), activities of daily living(ADL) score, Mini-Mental State Examination(MMSE) score, HER2 status, tumour size, grade and nodal status. Results: Data were available for 1,122 cancers in 1,098 patients recruited between February 2013 and June 2015 from 51 UK hospitals. About 78% of the population were treated surgically, with the remainder being treated with PET. Increasing patient age at diagnosis, increasing CCI score, large tumor size(5 cm or more) and dependence in one or more ADL categories were all strongly associated with non-surgical treatment(P<0.05).Conclusion: Increasing comorbidity, large tumor size and reduced functional ability are associated with reduced likelihood of surgical treatment of breast cancer in older patients. However, age itself remains a significant factor for non-surgical treatment; reinforcing the need for evidence-based guidelines.展开更多
<span style="font-family:Verdana;">T</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">his research ...<span style="font-family:Verdana;">T</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">his research develops and elaborates studies done for a contribution to the 2019 PIC International Conference 2019 in Malta, about the decision-making process. Decision-making is the act of choosing between two or more courses of action. In the wider process of problem-solving, decision-making involves choosing between possible solutions to a problem, and these decisions can be made through either an intuitive or reasoned process, or a combination of the two. The study of decision-making processes, to be understood as the role of human factors, becomes particularly interesting in complex organizations. This research aims to analyze how an effective team, within organizations, can develop a more correct and effective decision-making, in order to get an optimal solution, overcoming the typical uncertainty. The paper describes the point of departure of decision in complex, time-pressured, uncertain, ambiguous and changing environments. The use of a leading case (the Tenerife air accident, 1977), will lead us to the desired results, </span><i><span style="font-family:Verdana;">i</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;">e</span></i><span style="font-family:Verdana;">. to demonstrate how an effective decisional process, including team dynamics, can be useful to reduce the risk, present in all decisions, and reduce errors. The case of Tenerife air disaster, confirm our research. In that case, in fact, the group dynamics prove not to have worked. Thus, we can state that if a team approach had been followed instead of a more individual one, the results would probably have been different. The central belief of the research, is that classic decision theory could benefit from a team approach, which reduces the risk that a decision may lead to undesirable consequences. As demonstrated with the case study, within organizations, the decision-making is not a solitary action. Decisions, in fact, are made within a team and in order to be able to function effectively in a group, and manage group situations, there are essential skills. The team can then become a resource for the decisional process and problem solving, but it is necessary </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">understand the dynamics.</span></span></span>展开更多
Dear Editor, This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes. Due to the frequent fluctuations of feedstock properties and oper...Dear Editor, This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes. Due to the frequent fluctuations of feedstock properties and operating conditions in the industrial processes, existing data-driven methods cannot effectively adjust the operational variables. In addition, multimodal data such as images, audio.展开更多
Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning frame...Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.展开更多
While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present...While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.展开更多
Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professio...Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.展开更多
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values...Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.展开更多
Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to ob...Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.展开更多
Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are eff...Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.展开更多
Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is a...Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.展开更多
Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathema...Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.展开更多
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo...Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.展开更多
In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to ...In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.展开更多
文摘Decision-making is the process of deciding between two or more options in order to take the most appropriate and successful course of action in order to achieve sustainable mangrove management. However, the distinctiveness of mangrove as an ecosystem, and thus the attendant socio-economic and governance ramifications, causes the idea of decision making to become relatively distinct from other decision making process As a result, the purpose of this research was to evaluate the impact that community engagement plays in the decision-making process as it relates to the establishment of governance norms for sustainable mangrove management in Lamu County. In this study, a correlational research design was applied, and the researchers employed a mixed techniques approach. The target population was 296 respondents. The research used questionnaires and interviews to collect data. A descriptive statistical technique was utilized to perform an inspection and analysis on the data that was gathered. The findings indicated that having awareness about governance standards is beneficial during the process of making decisions. In addition, the findings demonstrated that respondents had the impression that the decision-making process was not done properly. On the other hand, the participants pointed out the positive aspects of the decision-making process and agreed that the participation of both gender was essential for the sustainable management of mangroves. Based on these data, it appeared that full community engagement in decision-making is necessary for sustainable management of mangrove forests.
文摘The design process of the built environment relies on the collaborative effort of all parties involved in the project.During the design phase,owners,end users,and their representatives are expected to make the most critical design and budgetary decisions-shaping the essential traits of the project,hence emerge the need and necessity to create and integrate mechanisms to support the decision-making process.Design decisions should not be based on assumptions,past experiences,or imagination.An example of the numerous problems that are a result of uninformed design decisions is“change orders”,known as the deviation from the original scope of work,which leads to an increase of the overall cost,and changes to the construction schedule of the project.The long-term aim of this inquiry is to understand the user’s behavior,and establish evidence-based control measures,which are actions and processes that can be implemented in practice to decrease the volume and frequency of the occurrence of change orders.The current study developed a foundation for further examination by proposing potential control measures,and testing their efficiency,such as integrating Virtual Reality(VR).The specific aim was to examine the effect of different visualization methods(i.e.,VR vs.construction drawings)on,(1)how well the subjects understand the information presented about the future/planned environment;(2)the subjects’perceived confidence in what the future environment will look like;(3)the likelihood of changing the built environment;(4)design review time;and(5)accuracy in reviewing and understanding the design.
文摘The aim of this paper is to present and analyze the factors, motivations and criteria considered in the decision-making processes of the actors belonging to the biodiesel production chain in Brazil. The biodiesel production chain consists of three main agents: the farmers, the soybean processing plants and the oil refinery/distributor. For the farmers organized in cooperatives the central decision is whether to sell oil-bearing crops for the production of biodiesel. In contrast, for the soybean processing plants that convert the crops into vegetable and/or biodiesel, the decision to produce this fuel is based on the wish to expand their market portfolio. Government tax incentives strongly influence both decisions regarding which oil-bearing crop to use and the amount of vegetable oil to be transformed into biodiesel. Finally, the oil refinery/distributor is obliged by law to mix the biodiesel with the mineral diesel and perceives this as a liability. The results show the existence of different characteristics linked to the decision-making process and a significant lack of synchronicity in the aims and motivations behind the agents' decisions. This state of decisional misalignment leads to heightened uncertainty regarding the sustainability of the Brazilian biodiesel production program.
文摘Using an analytical narrative approach to understand policy change, this paper explores the Brazilian government decision to create a digital TV policy initiating major reforms in this sector. The analysis is centered on the actors, preferences, and choices. The article is divided into three parts: (1) We address the historical institutionalism assumptions; (2) We focus on the politics of digital TV policy in Brazil; and (3) The results are highlighted, and "winners" and "losers" are identified. Actors, preferences, and choices are historically observed and related to the government decision about rules of digital TV exploitation. It provides configurational evidence that makes it possible to associate major changes to two presidential decrees (n° 4.901/2003 and n° 5.820/2006) that reflect the preferences and behavior of the main actor (broadcasters, social movements, and federal government) around the new digital TV issues. The Brazilian case shows an institutional model in which federal government's decisions are strongly connected with the preferences of the actor broadcasters and goes against the actor social movements.
文摘Community participation and community based management are topical themes in current policy and discussion revolving around decision-making processes especially those dealing with natural resources management.This review shows that while governments have accepted the need to either cede or devolve control and management of natural resources to the local communities,the communities are not part and parcel of the planning and budgeting which are crucial in decisionmaking.Communities were seen to be more involved in the implementation of natural resource management programs but lacked ownership of the projects.This causes lack of commitment to the programs and at times hostile reaction from the communities.The communities are always at the receiving end when it pertains to losses in the exchange.Community participation was shown to be effective when the local population is involved not as co-operating users but as natural resource managers or owner managers.
文摘The study determined the roles of agricultural extension in hybrid rice technology decision-making process by extension agents,Nay Pyi Taw,Myanmar.The specific objectives were:to study personal characteristics of agricultural extension agents,experiences and their roles,to identify extension agents’opinion on hybrid rice technology decision-making process,and to determine relationship between the roles of agricultural extension agents and decision-making process of hybrid rice production.One hundred and eight extension agents were collected who were working in Department of Agriculture,Nay Pyi Taw area and surveyed and interviewed by questionnaires.The study revealed that majority of agricultural extension agents(65.7%)were female staffs and most of extension agents(40.7%)were under 30 years as young staffs.Majority of extension agents(81.5%)were educated only Agri-Diploma.More than half(54.6%)had one to five-year experiences in employment and 58.3%had no hybrid rice training experience and source of information regarding the hybrid rice production was received 63.9%from Department of Agriculture(DOA).Study found that there was highly significant relationship between most of the roles of agricultural extension agents and hybrid rice technology decision-making process of stages 4 and 5.And then most of the extension agents’roles singnificantly related with stage 2 except role of conducting introduction of hybrid seeds and distribution through by Seed Co.Ltds which was highly significant.Beside,most of the roles of extension agents significantly related with stage 3.However stages 1 and 6 were no singnificantly related.Finally above all,a well structure seed business,Good Agricultural Practices and farm level mechanization and quality extension service are very important to increase the adoption of hybrid rice in Myanmar.
文摘I the context of the Corporate Governance Code enactment in Japan, we examine how newly introduced outside directors in Japanese boards obtain information to take part in the decision-making process. We conducted a systematic review of the literature and found 18 peer-reviewed publications in a time span between 2000 and 2016 that described the asymmetry of information between the insider group of board directors (including the CEO) and the outside board members. Our fmdings show that for the course of more than a decade, despite all changes and reforms, the role of board directors, whether insiders or outsiders, is still supplementary. They are treated more as advisors than active part in the decision-making process. We reveal different insider sources of information as forming social ties with the CEO and/or inside board directors and collaboration with Audit & Supervisory Board (Kansayaku), which can help reduce this asymmetry and improve the decision-making process. We assume that it will be easier for the outsiders to establish contacts and form social ties with the Audit & Supervisory Board members because of their unspoken lower status and thus to obtain more information about the company internal affairs and discussions that take place during the informal meetings, where only insiders (including the CEO) are present.
基金funded by the National Institute for Health Research (NIHR) under its Programme Grants for Applied Research Programme (Grant No. RP-PG-1209-10071)
文摘Objective: Up to 40% of women over 70 years with primary operable breast cancer in the UK are treated with primary endocrine therapy(PET) as an alternative to surgery. A variety of factors are important in determining treatment for older breast cancer patients. This study aimed to identify the patient and tumor factors associated with treatment allocation in this population.Methods: Prospectively collected data on treatment received(surgery vs. PET) were analysed with multivariable logistic regression using the variables age, modified Charlson Comorbidity Index(CCI), activities of daily living(ADL) score, Mini-Mental State Examination(MMSE) score, HER2 status, tumour size, grade and nodal status. Results: Data were available for 1,122 cancers in 1,098 patients recruited between February 2013 and June 2015 from 51 UK hospitals. About 78% of the population were treated surgically, with the remainder being treated with PET. Increasing patient age at diagnosis, increasing CCI score, large tumor size(5 cm or more) and dependence in one or more ADL categories were all strongly associated with non-surgical treatment(P<0.05).Conclusion: Increasing comorbidity, large tumor size and reduced functional ability are associated with reduced likelihood of surgical treatment of breast cancer in older patients. However, age itself remains a significant factor for non-surgical treatment; reinforcing the need for evidence-based guidelines.
文摘<span style="font-family:Verdana;">T</span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">his research develops and elaborates studies done for a contribution to the 2019 PIC International Conference 2019 in Malta, about the decision-making process. Decision-making is the act of choosing between two or more courses of action. In the wider process of problem-solving, decision-making involves choosing between possible solutions to a problem, and these decisions can be made through either an intuitive or reasoned process, or a combination of the two. The study of decision-making processes, to be understood as the role of human factors, becomes particularly interesting in complex organizations. This research aims to analyze how an effective team, within organizations, can develop a more correct and effective decision-making, in order to get an optimal solution, overcoming the typical uncertainty. The paper describes the point of departure of decision in complex, time-pressured, uncertain, ambiguous and changing environments. The use of a leading case (the Tenerife air accident, 1977), will lead us to the desired results, </span><i><span style="font-family:Verdana;">i</span></i><span style="font-family:Verdana;">.</span><i><span style="font-family:Verdana;">e</span></i><span style="font-family:Verdana;">. to demonstrate how an effective decisional process, including team dynamics, can be useful to reduce the risk, present in all decisions, and reduce errors. The case of Tenerife air disaster, confirm our research. In that case, in fact, the group dynamics prove not to have worked. Thus, we can state that if a team approach had been followed instead of a more individual one, the results would probably have been different. The central belief of the research, is that classic decision theory could benefit from a team approach, which reduces the risk that a decision may lead to undesirable consequences. As demonstrated with the case study, within organizations, the decision-making is not a solitary action. Decisions, in fact, are made within a team and in order to be able to function effectively in a group, and manage group situations, there are essential skills. The team can then become a resource for the decisional process and problem solving, but it is necessary </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">understand the dynamics.</span></span></span>
基金supported by the National Key Research and Development Program of China (2020YFB1713800)the National Natural Science Foundation of China (92267205)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate (CX2022 0267)the Fundamental Research Funds for the Central Universities of Central South University (2022ZZTS0181)。
文摘Dear Editor, This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes. Due to the frequent fluctuations of feedstock properties and operating conditions in the industrial processes, existing data-driven methods cannot effectively adjust the operational variables. In addition, multimodal data such as images, audio.
基金the financial support of the National Key Research and Development Program of China(2020AAA0108100)the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Shanghai Gaofeng and Gaoyuan Project for University Academic Program Development for funding。
文摘Decision-making and motion planning are extremely important in autonomous driving to ensure safe driving in a real-world environment.This study proposes an online evolutionary decision-making and motion planning framework for autonomous driving based on a hybrid data-and model-driven method.First,a data-driven decision-making module based on deep reinforcement learning(DRL)is developed to pursue a rational driving performance as much as possible.Then,model predictive control(MPC)is employed to execute both longitudinal and lateral motion planning tasks.Multiple constraints are defined according to the vehicle’s physical limit to meet the driving task requirements.Finally,two principles of safety and rationality for the self-evolution of autonomous driving are proposed.A motion envelope is established and embedded into a rational exploration and exploitation scheme,which filters out unreasonable experiences by masking unsafe actions so as to collect high-quality training data for the DRL agent.Experiments with a high-fidelity vehicle model and MATLAB/Simulink co-simulation environment are conducted,and the results show that the proposed online-evolution framework is able to generate safer,more rational,and more efficient driving action in a real-world environment.
基金supported in part by the Start-Up Grant-Nanyang Assistant Professorship Grant of Nanyang Technological Universitythe Agency for Science,Technology and Research(A*STAR)under Advanced Manufacturing and Engineering(AME)Young Individual Research under Grant(A2084c0156)+2 种基金the MTC Individual Research Grant(M22K2c0079)the ANR-NRF Joint Grant(NRF2021-NRF-ANR003 HM Science)the Ministry of Education(MOE)under the Tier 2 Grant(MOE-T2EP50222-0002)。
文摘While autonomous vehicles are vital components of intelligent transportation systems,ensuring the trustworthiness of decision-making remains a substantial challenge in realizing autonomous driving.Therefore,we present a novel robust reinforcement learning approach with safety guarantees to attain trustworthy decision-making for autonomous vehicles.The proposed technique ensures decision trustworthiness in terms of policy robustness and collision safety.Specifically,an adversary model is learned online to simulate the worst-case uncertainty by approximating the optimal adversarial perturbations on the observed states and environmental dynamics.In addition,an adversarial robust actor-critic algorithm is developed to enable the agent to learn robust policies against perturbations in observations and dynamics.Moreover,we devise a safety mask to guarantee the collision safety of the autonomous driving agent during both the training and testing processes using an interpretable knowledge model known as the Responsibility-Sensitive Safety Model.Finally,the proposed approach is evaluated through both simulations and experiments.These results indicate that the autonomous driving agent can make trustworthy decisions and drastically reduce the number of collisions through robust safety policies.
基金supported by the National Key Research,Development Program of China (2020AAA0103404)the Beijing Nova Program (20220484077)the National Natural Science Foundation of China (62073323)。
文摘Due to ever-growing soccer data collection approaches and progressing artificial intelligence(AI) methods, soccer analysis, evaluation, and decision-making have received increasing interest from not only the professional sports analytics realm but also the academic AI research community. AI brings gamechanging approaches for soccer analytics where soccer has been a typical benchmark for AI research. The combination has been an emerging topic. In this paper, soccer match analytics are taken as a complete observation-orientation-decision-action(OODA) loop.In addition, as in AI frameworks such as that for reinforcement learning, interacting with a virtual environment enables an evolving model. Therefore, both soccer analytics in the real world and virtual domains are discussed. With the intersection of the OODA loop and the real-virtual domains, available soccer data, including event and tracking data, and diverse orientation and decisionmaking models for both real-world and virtual soccer matches are comprehensively reviewed. Finally, some promising directions in this interdisciplinary area are pointed out. It is claimed that paradigms for both professional sports analytics and AI research could be combined. Moreover, it is quite promising to bridge the gap between the real and virtual domains for soccer match analysis and decision-making.
基金This work was funded by the National Natural Science Foundation of China Nos.U22A2099,61966009,62006057the Graduate Innovation Program No.YCSW2022286.
文摘Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems.
基金supported by the National Natural Science Foundation of China (No.72071150).
文摘Stroke is a chronic cerebrovascular disease that carries a high risk.Stroke risk assessment is of great significance in preventing,reversing and reducing the spread and the health hazards caused by stroke.Aiming to objectively predict and identify strokes,this paper proposes a new stroke risk assessment decision-making model named Logistic-AdaBoost(Logistic-AB)based on machine learning.First,the categorical boosting(CatBoost)method is used to perform feature selection for all features of stroke,and 8 main features are selected to form a new index evaluation system to predict the risk of stroke.Second,the borderline synthetic minority oversampling technique(SMOTE)algorithm is applied to transform the unbalanced stroke dataset into a balanced dataset.Finally,the stroke risk assessment decision-makingmodel Logistic-AB is constructed,and the overall prediction performance of this new model is evaluated by comparing it with ten other similar models.The comparison results show that the new model proposed in this paper performs better than the two single algorithms(logistic regression and AdaBoost)on the four indicators of recall,precision,F1 score,and accuracy,and the overall performance of the proposed model is better than that of common machine learning algorithms.The Logistic-AB model presented in this paper can more accurately predict patients’stroke risk.
文摘Purpose–Material selection,driven by wide and often conflicting objectives,is an important,sometimes difficult problem in material engineering.In this context,multi-criteria decision-making(MCDM)methodologies are effective.An approach of MCDM is needed to cater to criteria of material assortment simultaneously.More firms are now concerned about increasing their productivity using mathematical tools.To occupy a gap in the previous literature this research recommends an integrated MCDM and mathematical Bi-objective model for the selection of material.In addition,by using the Technique for Order Preference by Similarity to Ideal Solution(TOPSIS),the inherent ambiguities of decision-makers in paired evaluations are considered in this research.It goes on to construct a mathematical bi-objective model for determining the best item to purchase.Design/methodology/approach–The entropy perspective is implemented in this paper to evaluate the weight parameters,while the TOPSIS technique is used to determine the best and worst intermediate pipe materials for automotive exhaust system.The intermediate pipes are used to join the components of the exhaust systems.The materials usually used to manufacture intermediate pipe are SUS 436LM,SUS 430,SUS 304,SUS 436L,SUH 409 L,SUS 441 L and SUS 439L.These seven materials are evaluated based on tensile strength(TS),hardness(H),elongation(E),yield strength(YS)and cost(C).A hybrid methodology combining entropy-based criteria weighting,with the TOPSIS for alternative ranking,is pursued to identify the optimal design material for an engineered application in this paper.This study aims to help while filling the information gap in selecting the most suitable material for use in the exhaust intermediate pipes.After that,the authors searched for and considered eight materials and evaluated them on the following five criteria:(1)TS,(2)YS,(3)H,(4)E and(5)C.The first two criteria have been chosen because they can have a lot of influence on the behavior of the exhaust intermediate pipes,on their performance and on the cost.In this structure,the weights of the criteria are calculated objectively through the entropy method in order to have an unbiased assessment.This essentially measures the quantity of information each criterion contribution,indicating the relative importance of these criteria better.Subsequently,the materials were ranked using the TOPSIS method in terms of their relative performance by measuring each material from an ideal solution to determine the best alternative.The results show that SUS 309,SUS 432L and SUS 436 LM are the first three materials that the exhaust intermediate pipe optimal design should consider.Findings–The material matrix of the decision presented in Table 3 was normalized through Equation 5,as shown in Table 5,and the matrix was multiplied with weighting criteriaß_j.The obtained weighted normalized matrix V_ij is presented in Table 6.However,the ideal,worst and best value was ascertained by employing Equation 7.This study is based on the selection of material for the development of intermediate pipe using MCDM,and it involves four basic stages,i.e.method of translation criteria,screening process,method of ranking and search for methods.The selection was done through the TOPSIS method,and the criteria weight was obtained by the entropy method.The result showed that the top three materials are SUS 309,SUS 432L and SUS 436 LM,respectively.For the future work,it is suggested to select more alternatives and criteria.The comparison can also be done by using different MCDM techniques like and Choice Expressing Reality(ELECTRE),Decision-Making Trial and Evaluation Laboratory(DEMATEL)and Preference Ranking Organization Method for Enrichment Evaluation(PROMETHEE).Originality/value–The results provide important conclusions for material selection in this targeted application,verifying the employment of mutual entropy-TOPSIS methodology for a series of difficult engineering decisions in material engineering concepts that combine superior capacity with better performance as well as cost-efficiency in various engineering design.
基金the Deanship of Scientific Research at Umm Al-Qura University(Grant Code:22UQU4310396DSR65).
文摘Spherical q-linearDiophantine fuzzy sets(Sq-LDFSs)provedmore effective for handling uncertainty and vagueness in multi-criteria decision-making(MADM).It does not only cover the data in two variable parameters but is also beneficial for three parametric data.By Pythagorean fuzzy sets,the difference is calculated only between two parameters(membership and non-membership).According to human thoughts,fuzzy data can be found in three parameters(membership uncertainty,and non-membership).So,to make a compromise decision,comparing Sq-LDFSs is essential.Existing measures of different fuzzy sets do,however,can have several flaws that can lead to counterintuitive results.For instance,they treat any increase or decrease in the membership degree as the same as the non-membership degree because the uncertainty does not change,even though each parameter has a different implication.In the Sq-LDFSs comparison,this research develops the differentialmeasure(DFM).Themain goal of the DFM is to cover the unfair arguments that come from treating different types of FSs opposing criteria equally.Due to their relative positions in the attribute space and the similarity of their membership and non-membership degrees,two Sq-LDFSs formthis preference connectionwhen the uncertainty remains same in both sets.According to the degree of superiority or inferiority,two Sq-LDFSs are shown as identical,equivalent,superior,or inferior over one another.The suggested DFM’s fundamental characteristics are provided.Based on the newly developed DFM,a unique approach tomultiple criterion group decision-making is offered.Our suggestedmethod verifies the novel way of calculating the expert weights for Sq-LDFSS as in PFSs.Our proposed technique in three parameters is applied to evaluate solid-state drives and choose the optimum photovoltaic cell in two applications by taking uncertainty parameter zero.The method’s applicability and validity shown by the findings are contrasted with those obtained using various other existing approaches.To assess its stability and usefulness,a sensitivity analysis is done.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).
文摘Tourism is a popular activity that allows individuals to escape their daily routines and explore new destinations for various reasons,including leisure,pleasure,or business.A recent study has proposed a unique mathematical concept called a q−Rung orthopair fuzzy hypersoft set(q−ROFHS)to enhance the formal representation of human thought processes and evaluate tourism carrying capacity.This approach can capture the imprecision and ambiguity often present in human perception.With the advanced mathematical tools in this field,the study has also incorporated the Einstein aggregation operator and score function into the q−ROFHS values to supportmultiattribute decision-making algorithms.By implementing this technique,effective plans can be developed for social and economic development while avoiding detrimental effects such as overcrowding or environmental damage caused by tourism.A case study of selected tourism carrying capacity will demonstrate the proposed methodology.
基金supported by the Key Research and Development Program of Shaanxi (2022GXLH-02-09)the Aeronautical Science Foundation of China (20200051053001)the Natural Science Basic Research Program of Shaanxi (2020JM-147)。
文摘Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy.
文摘In the developmental dilemma of artificial intelligence(AI)-assisted judicial decision-making,the technical architecture of AI determines its inherent lack of transparency and interpretability,which is challenging to fundamentally improve.This can be considered a true challenge in the realm of AI-assisted judicial decision-making.By examining the court’s acceptance,integration,and trade-offs of AI technology embedded in the judicial field,the exploration of potential conflicts,interactions,and even mutual shaping between the two will not only reshape their conceptual connotations and intellectual boundaries but also strengthen the cognition and re-interpretation of the basic principles and core values of the judicial trial system.