The decline in groundwater level is a key factor contributing to cover collapse in karst areas.In this study,the model tests and numerical simulations are conducted to reveal the breeding process and formation mechani...The decline in groundwater level is a key factor contributing to cover collapse in karst areas.In this study,the model tests and numerical simulations are conducted to reveal the breeding process and formation mechanism of cover collapse sinkholes caused by the decline of groundwater level in karst area.Firstly,the model tests confirm that the decline of groundwater level generates negative pressure at the lower edge of overlying soil.The negative pressure experiences four distinct phases during the groundwater drawdown process:rapid rise,slow decline,rapid decline,and gradual dissipation.The maximum negative pressure is influenced by the particle size distribution of the overlying soil.Then,the numerical simulations are carried out to investigate the change process of negative pressure caused by the loss of fillers in karst pipe.The simulated results indicate that the rate of groundwater decline and the thickness and initial void ratio of the overlying soil can affect the maximum negative pressure.As groundwater level drops,a negative pressure zone forms underground,causing tensile failure in the surrounding soil and creating an arched soil hole,which weakens the support for the overlying soil.This phenomenon can also lead to the collapse of the overlying soil under its self-weight.Groundwater table decline in karst areas can result in both internal and surface collapses.When the overlying soil is thin,internal and surface collapses occur simultaneously.In contrast,for thick overlying soil,internal collapse happens first,followed by a layer-by-layer collapse,ultimately forming sinkholes.Finally,the breeding process and formation mechanism of the Yujiawan Reservoir sinkholes are discussed.Geological conditions and groundwater level decline significantly affect internal collapse in karst areas,requiring careful consideration from on-site engineers.展开更多
The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relev...The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relevance. The decline in Gulf Coast aquifer water quality and quantity has been alarming especially with the increased demand on fresh water in neighboring non-coastal communities. This study used seawater levels, groundwater use, and well data to investigate the association of these factors on the salinity of water indicated by chloride levels. Statistical analyses were conducted pointing to the high significance of both sea water level and groundwater withdrawals to chloride concentrations. However, groundwater withdrawal had higher significance which points to the need of water management systems in order to limit groundwater use. The findings also point to the great impact of increased groundwater salinity in the Gulf Coast aquifer on agriculture and socioeconomic status of coastal communities. The high costs of desalinization point to the increased signification of water rerouting and groundwater management systems. Further investigation and actions are in dire need to manage these vulnerabilities of the coastal communities.展开更多
The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and gro...The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and groundwater". Case study: Ma river basin in Vietnam. The results were implemented: (i) data collection, fieldwork survey, synthesis and analysis of information and data; (ii) partitioning the influence degree of climate change and sea level rise to groundwater; (iii) determining criteria to select monitoring routes, location of monitoring groundwater in the condition of climate change and sea level rise and (iv) developing the monitoring system. The research's results have practical implications for the water resources management in the context of climate change and sea level rise in Ma river basin.展开更多
The Nile Delta is considered to be one of the most vulnerable river deltas to Sea Level Rise (SLR) in the world. SLR is expected to affect large agricultural areas of the Nile Delta, either through inundation or highe...The Nile Delta is considered to be one of the most vulnerable river deltas to Sea Level Rise (SLR) in the world. SLR is expected to affect large agricultural areas of the Nile Delta, either through inundation or higher levels and salinity of groundwater. It could be argued that such impacts would augment the problems experienced already in the area in terms of high groundwater table and salinity levels. In order to guide policy and decision making, especially in terms of assessing the economics of various adaptation options, there is a need to provide estimates of potential economic damage that could result from such changes. The paper in hand aims to estimate the economic value of potential primary impacts of higher levels of groundwater table due to expected SLR on agriculture productivity in Damietta Governorate as one of the Nile Delta coastal governorates. To conduct such an assessment, relationship between groundwater table level and agricultural productivity was first investigated in relevant literature. This was followed by reviewing prevailing conditions in the agricultural sector in the study area. Thereafter, a regression analysis for the main crops in the study area, between crop yield and groundwater table levels, was conducted. Based on the developed regression, a GIS (Geographic Information System)-based hydrological model, and a production economic model, were employed to assess economic value of higher levels of groundwater table impacts on agriculture productivity. It was found that future accumulative crop yield loss was estimated, using segmented linear regression, up to the year 2100 to be as much as L.E. 6.43 billion. It is worth mentioning that these estimates do not include indirect impacts of higher levels of groundwater table, which may include loss of jobs and/or earnings, impacts on food supply and food security in the area. A potential adaptation option, namely redesigning and upgrading existing drainage infrastructure, was found to cost a total of L.E. 190.8 million, representing about 4.5% of the estimated accumulative potential damage to agricultural productivity up to the year 2100.展开更多
Delingha is located in the northeast margin of Qaidam Basin.Bayin River alluvial proluvial fan is the main aquifer of Delingha,in which groundwater generally flows from north to south.The hydrochemistry results showed...Delingha is located in the northeast margin of Qaidam Basin.Bayin River alluvial proluvial fan is the main aquifer of Delingha,in which groundwater generally flows from north to south.The hydrochemistry results showed that two different hydrochemical evolution paths formed along southeast and southwest directions,respectively.Cl-Na type groundwater was formed in front of Gahai Lake,and SO_(4)·HCO_(3)-Na·Ca type groundwater was formed in front of Keluke Lake.The results of deuterium(D)and 18O revealed that the groundwater mainly originated from the continuous accumulation of precipitation during geological history under cold and humid climate conditions.In addition,results of ^(14)C indicated that the groundwater age was more than 1140 years,implying relatively poor renewal capability of regional groundwater.Moreover,our numerical modeling results showed that the regional groundwater level will continue to rise under the warm and humid climate conditions.展开更多
Local communities want to know the cost of improvements needed to their drainage system based on projected sea level rise. Prior research demonstrates that in coastal areas, groundwater will rise with sea level. As a ...Local communities want to know the cost of improvements needed to their drainage system based on projected sea level rise. Prior research demonstrates that in coastal areas, groundwater will rise with sea level. As a result the combination of groundwater levels and tidal data must be used to predict local impacts of sea level rise on the drainage system. However, it would appear to complicate the situation if the amount of data available for making sea level rise projections with groundwater is limited. The objectives of this task were to identify available data in a data limited community, compare the available data, assess the impact of sea level rise on the community, and its impact on the stormwater system, identify vulnerable areas in the City, provide an estimate of long-term costs for improvements, and provide a toolbox of strategies to employ at the appropriate time. The project was conducted using ArcGIS tools to import tidal, groundwater, topographic LiDAR and infrastructure improvements into GIS software and performing analysis based on current data. The cost of improvements was based on applying actual 2015 construction costs in the subject comments across a larger vulnerable area. It was found that the data sources provided similar results, despite different timelines and dates so did not interfere with the subsequent analysis. The data revealed that over $400 million in current dollars might be needed to address stormwater issues arising from sea level rise before 2100.展开更多
This study examines perceptions of climate change and sea level rise in New Jersey residents in 2012 and 2014. Different surveys have shown declines in interest and concern about climate change and sea level rise. Cli...This study examines perceptions of climate change and sea level rise in New Jersey residents in 2012 and 2014. Different surveys have shown declines in interest and concern about climate change and sea level rise. Climate change and increasing temperatures have an anthropogenic cause, which relates to energy use, making it important to examine whether people believe that it is occurring. In late 2012 New Jersey experienced Super storm Sandy, one of the worst hurricanes in its history, followed by public discussion and media coverage of stronger more frequent storms due to climate change. Using structured interviews, we tested the null hypotheses that there were no differences in perceptions of 1260 interviewees as a function of year of the survey, age, gender, years of education, and self-evaluation of science knowledge (on a scale of 1 to 5). In 2012 460 of 639 (72%) rated “global warming occurring” as “certain” (#4) or “very certain” (#5) compared with 453 of 621 (73%) in 2014. For “due to human activities” the numbers of “certain” or “very certain” were 71% in 2012, and 67% in 2014 and for sea level rise the numbers were 64% and 70%. There were some inconsistent between-year differences with higher ratings in 2012 for 3 outcomes and higher ratings in 2014 for 5 outcomes. However, for 25 questions relative to climate change, sea level rise, and the personal and ecological effects of sea level rise, self-evaluation of science knowledge, independent of years of education, was the factor that entered 23 of the models, accounting for the most variability in ratings. People who believed they had a “high knowledge” (#4) or “very high knowledge” (#5) of science rated all issues as more important than did those people who rated their own scientific knowledge as average or below average.展开更多
Changes in groundwater level in Homand-Absard plain, located in north-west of Kavir-e-Markazi watershed and east of Tehran province, were studied. The used research method was descriptive approach, and the research st...Changes in groundwater level in Homand-Absard plain, located in north-west of Kavir-e-Markazi watershed and east of Tehran province, were studied. The used research method was descriptive approach, and the research study was conducted based on field and desk surveys. The data needed was provided from field surveys, contours maps, and data of observation wells. There were 17 observation wells in the study area where the changes in groundwater levels were measured during 1996-2013, and an index hydrograph was prepared for the aquifer of plain. The sharpest decline in the groundwater level was in the central of Homan-Absard plain. There was 1.43 m decline in the groundwater level of aquifer annually, compared with similar studies in other parts of Iran, it has a high rate, and to the average, the groundwater level of plain has dropped equal to 25.76 m, 1996-2013. According to the study findings, the groundwater level changes with those in rainfall weren't match and the drop in groundwater level during wet years and then has continued which represents the high water extraction factor on the groundwater level drop.展开更多
This paper examines the rise in the level of the groundwater in the Quaternary aquifer at Aswan city, Upper Egypt. Since the 1960’s, the areal extent of Aswan City and the urban populations are growing at a high pace...This paper examines the rise in the level of the groundwater in the Quaternary aquifer at Aswan city, Upper Egypt. Since the 1960’s, the areal extent of Aswan City and the urban populations are growing at a high pace which introduces new sources of water that increase groundwater recharge. As a result of leakages or infiltrations from different sources, the natural groundwater balance is overturned into an unbalance where the input to water table is comparatively much more than the natural groundwater flow towards the Nile River. The present study shows a variation in the groundwater level, from 1971 up to 2014, where the water table rising ranges between 12.55 and 13.69 m. Also, it shows an abrupt increase in the water levels in 2010 continuing up till now. The groundwater rising phenomena that happened in 2010 can be directly refereed to the cessation of groundwater pumping from El-Shallal wells, and to the reduction of pumping from KIMA factory wells. Generally, the rate of water rising is much higher in the western side of the city and in Kima factory area, where they are characterized by low relief and dense population. The most troublesome groundwater mounds under urban areas are likely to develop in low-lying areas of relatively high permeability aquifer, which is not exploited for water supply. These damages will become more widespread if the rising groundwater table remains uncontrolled.?The environmental impact of the water rising includes: forming ponds in low lying areas (Kima and El Shallal ponds), flooding building’s basements, and inundating underground infrastructure.?A general deterioration in groundwater quality was identified.展开更多
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QE110)the National Natural Science Foundation of China,China(Grant No.52104089).
文摘The decline in groundwater level is a key factor contributing to cover collapse in karst areas.In this study,the model tests and numerical simulations are conducted to reveal the breeding process and formation mechanism of cover collapse sinkholes caused by the decline of groundwater level in karst area.Firstly,the model tests confirm that the decline of groundwater level generates negative pressure at the lower edge of overlying soil.The negative pressure experiences four distinct phases during the groundwater drawdown process:rapid rise,slow decline,rapid decline,and gradual dissipation.The maximum negative pressure is influenced by the particle size distribution of the overlying soil.Then,the numerical simulations are carried out to investigate the change process of negative pressure caused by the loss of fillers in karst pipe.The simulated results indicate that the rate of groundwater decline and the thickness and initial void ratio of the overlying soil can affect the maximum negative pressure.As groundwater level drops,a negative pressure zone forms underground,causing tensile failure in the surrounding soil and creating an arched soil hole,which weakens the support for the overlying soil.This phenomenon can also lead to the collapse of the overlying soil under its self-weight.Groundwater table decline in karst areas can result in both internal and surface collapses.When the overlying soil is thin,internal and surface collapses occur simultaneously.In contrast,for thick overlying soil,internal collapse happens first,followed by a layer-by-layer collapse,ultimately forming sinkholes.Finally,the breeding process and formation mechanism of the Yujiawan Reservoir sinkholes are discussed.Geological conditions and groundwater level decline significantly affect internal collapse in karst areas,requiring careful consideration from on-site engineers.
文摘The two main factors contributing to depletion of freshwater resources are climate change and anthropological variables. This study presents statistical analyses that are local in its specifics yet global in its relevance. The decline in Gulf Coast aquifer water quality and quantity has been alarming especially with the increased demand on fresh water in neighboring non-coastal communities. This study used seawater levels, groundwater use, and well data to investigate the association of these factors on the salinity of water indicated by chloride levels. Statistical analyses were conducted pointing to the high significance of both sea water level and groundwater withdrawals to chloride concentrations. However, groundwater withdrawal had higher significance which points to the need of water management systems in order to limit groundwater use. The findings also point to the great impact of increased groundwater salinity in the Gulf Coast aquifer on agriculture and socioeconomic status of coastal communities. The high costs of desalinization point to the increased signification of water rerouting and groundwater management systems. Further investigation and actions are in dire need to manage these vulnerabilities of the coastal communities.
文摘The results presented in this paper are a part of the research results of the thesis "research on scientific basis and practice of develop a system of monitoring the impacts of climate change on surface water and groundwater". Case study: Ma river basin in Vietnam. The results were implemented: (i) data collection, fieldwork survey, synthesis and analysis of information and data; (ii) partitioning the influence degree of climate change and sea level rise to groundwater; (iii) determining criteria to select monitoring routes, location of monitoring groundwater in the condition of climate change and sea level rise and (iv) developing the monitoring system. The research's results have practical implications for the water resources management in the context of climate change and sea level rise in Ma river basin.
文摘The Nile Delta is considered to be one of the most vulnerable river deltas to Sea Level Rise (SLR) in the world. SLR is expected to affect large agricultural areas of the Nile Delta, either through inundation or higher levels and salinity of groundwater. It could be argued that such impacts would augment the problems experienced already in the area in terms of high groundwater table and salinity levels. In order to guide policy and decision making, especially in terms of assessing the economics of various adaptation options, there is a need to provide estimates of potential economic damage that could result from such changes. The paper in hand aims to estimate the economic value of potential primary impacts of higher levels of groundwater table due to expected SLR on agriculture productivity in Damietta Governorate as one of the Nile Delta coastal governorates. To conduct such an assessment, relationship between groundwater table level and agricultural productivity was first investigated in relevant literature. This was followed by reviewing prevailing conditions in the agricultural sector in the study area. Thereafter, a regression analysis for the main crops in the study area, between crop yield and groundwater table levels, was conducted. Based on the developed regression, a GIS (Geographic Information System)-based hydrological model, and a production economic model, were employed to assess economic value of higher levels of groundwater table impacts on agriculture productivity. It was found that future accumulative crop yield loss was estimated, using segmented linear regression, up to the year 2100 to be as much as L.E. 6.43 billion. It is worth mentioning that these estimates do not include indirect impacts of higher levels of groundwater table, which may include loss of jobs and/or earnings, impacts on food supply and food security in the area. A potential adaptation option, namely redesigning and upgrading existing drainage infrastructure, was found to cost a total of L.E. 190.8 million, representing about 4.5% of the estimated accumulative potential damage to agricultural productivity up to the year 2100.
基金This work was supported by the National Natural Science Foundation of China(41672243)the China Geological Survey Program(DD20160291,DD20189270).
文摘Delingha is located in the northeast margin of Qaidam Basin.Bayin River alluvial proluvial fan is the main aquifer of Delingha,in which groundwater generally flows from north to south.The hydrochemistry results showed that two different hydrochemical evolution paths formed along southeast and southwest directions,respectively.Cl-Na type groundwater was formed in front of Gahai Lake,and SO_(4)·HCO_(3)-Na·Ca type groundwater was formed in front of Keluke Lake.The results of deuterium(D)and 18O revealed that the groundwater mainly originated from the continuous accumulation of precipitation during geological history under cold and humid climate conditions.In addition,results of ^(14)C indicated that the groundwater age was more than 1140 years,implying relatively poor renewal capability of regional groundwater.Moreover,our numerical modeling results showed that the regional groundwater level will continue to rise under the warm and humid climate conditions.
文摘Local communities want to know the cost of improvements needed to their drainage system based on projected sea level rise. Prior research demonstrates that in coastal areas, groundwater will rise with sea level. As a result the combination of groundwater levels and tidal data must be used to predict local impacts of sea level rise on the drainage system. However, it would appear to complicate the situation if the amount of data available for making sea level rise projections with groundwater is limited. The objectives of this task were to identify available data in a data limited community, compare the available data, assess the impact of sea level rise on the community, and its impact on the stormwater system, identify vulnerable areas in the City, provide an estimate of long-term costs for improvements, and provide a toolbox of strategies to employ at the appropriate time. The project was conducted using ArcGIS tools to import tidal, groundwater, topographic LiDAR and infrastructure improvements into GIS software and performing analysis based on current data. The cost of improvements was based on applying actual 2015 construction costs in the subject comments across a larger vulnerable area. It was found that the data sources provided similar results, despite different timelines and dates so did not interfere with the subsequent analysis. The data revealed that over $400 million in current dollars might be needed to address stormwater issues arising from sea level rise before 2100.
文摘This study examines perceptions of climate change and sea level rise in New Jersey residents in 2012 and 2014. Different surveys have shown declines in interest and concern about climate change and sea level rise. Climate change and increasing temperatures have an anthropogenic cause, which relates to energy use, making it important to examine whether people believe that it is occurring. In late 2012 New Jersey experienced Super storm Sandy, one of the worst hurricanes in its history, followed by public discussion and media coverage of stronger more frequent storms due to climate change. Using structured interviews, we tested the null hypotheses that there were no differences in perceptions of 1260 interviewees as a function of year of the survey, age, gender, years of education, and self-evaluation of science knowledge (on a scale of 1 to 5). In 2012 460 of 639 (72%) rated “global warming occurring” as “certain” (#4) or “very certain” (#5) compared with 453 of 621 (73%) in 2014. For “due to human activities” the numbers of “certain” or “very certain” were 71% in 2012, and 67% in 2014 and for sea level rise the numbers were 64% and 70%. There were some inconsistent between-year differences with higher ratings in 2012 for 3 outcomes and higher ratings in 2014 for 5 outcomes. However, for 25 questions relative to climate change, sea level rise, and the personal and ecological effects of sea level rise, self-evaluation of science knowledge, independent of years of education, was the factor that entered 23 of the models, accounting for the most variability in ratings. People who believed they had a “high knowledge” (#4) or “very high knowledge” (#5) of science rated all issues as more important than did those people who rated their own scientific knowledge as average or below average.
文摘Changes in groundwater level in Homand-Absard plain, located in north-west of Kavir-e-Markazi watershed and east of Tehran province, were studied. The used research method was descriptive approach, and the research study was conducted based on field and desk surveys. The data needed was provided from field surveys, contours maps, and data of observation wells. There were 17 observation wells in the study area where the changes in groundwater levels were measured during 1996-2013, and an index hydrograph was prepared for the aquifer of plain. The sharpest decline in the groundwater level was in the central of Homan-Absard plain. There was 1.43 m decline in the groundwater level of aquifer annually, compared with similar studies in other parts of Iran, it has a high rate, and to the average, the groundwater level of plain has dropped equal to 25.76 m, 1996-2013. According to the study findings, the groundwater level changes with those in rainfall weren't match and the drop in groundwater level during wet years and then has continued which represents the high water extraction factor on the groundwater level drop.
文摘This paper examines the rise in the level of the groundwater in the Quaternary aquifer at Aswan city, Upper Egypt. Since the 1960’s, the areal extent of Aswan City and the urban populations are growing at a high pace which introduces new sources of water that increase groundwater recharge. As a result of leakages or infiltrations from different sources, the natural groundwater balance is overturned into an unbalance where the input to water table is comparatively much more than the natural groundwater flow towards the Nile River. The present study shows a variation in the groundwater level, from 1971 up to 2014, where the water table rising ranges between 12.55 and 13.69 m. Also, it shows an abrupt increase in the water levels in 2010 continuing up till now. The groundwater rising phenomena that happened in 2010 can be directly refereed to the cessation of groundwater pumping from El-Shallal wells, and to the reduction of pumping from KIMA factory wells. Generally, the rate of water rising is much higher in the western side of the city and in Kima factory area, where they are characterized by low relief and dense population. The most troublesome groundwater mounds under urban areas are likely to develop in low-lying areas of relatively high permeability aquifer, which is not exploited for water supply. These damages will become more widespread if the rising groundwater table remains uncontrolled.?The environmental impact of the water rising includes: forming ponds in low lying areas (Kima and El Shallal ponds), flooding building’s basements, and inundating underground infrastructure.?A general deterioration in groundwater quality was identified.