In this paper,Symbol-Error-Rate(SER) performance analysis is provided for a Decode-and-Forward(DF) cooperative scheme in satellite mobile channel environment.We present a satellite mobile cooperative communication sys...In this paper,Symbol-Error-Rate(SER) performance analysis is provided for a Decode-and-Forward(DF) cooperative scheme in satellite mobile channel environment.We present a satellite mobile cooperative communication system model and derive two generalized error probability ex-pressions with Cyclical Redundancy Check(CRC) or not.We also derive and simulate SER of the proposed system over different satellite mobile channels.The results show that the analytical results are in great accordance with the ones obtained by simulation.Also,it was shown that,whether or not adopt CRC depends on the channel link quality between the source node and the relay node.展开更多
Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key ...Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.展开更多
The present work is a discussion on the performance analysis of Modified Cooperative Subchannel Allocation (CSA) Algorithms which is used in Alamouti Decoded and Forward (Alamouti DF) Relaying Protocol for wireless mu...The present work is a discussion on the performance analysis of Modified Cooperative Subchannel Allocation (CSA) Algorithms which is used in Alamouti Decoded and Forward (Alamouti DF) Relaying Protocol for wireless multi-user Orthogonal Frequency Division Multiplexing Access (OFDMA) systems. In addition, the performance of approximate Symbol Error Rate (SER) for the Alamouti DF Relaying Protocol with the Cooperative Maximum Ratio Combining Technique (C-MRC) is analyzed and compared with SER upper bound. The approximate SER is asymptotically tight bound at higher Signal-to-Noise Ratio (SNR). From the asymptotic tight bound approximate SER, Particle Swarm Optimization (PSO) based Power Allocation (PA) is determined for the Alamouti DF Relaying Protocol. The simulation results suggested that the Modified Throughput based Subchannel Allocation Algorithm achieved an improved throughput of 6% to 33% compared to that of existing cooperative diversity protocol. Further, the Modified Fairness based Subchannel Allocation Algorithm rendered fairness of 7.2% to 17% among the multiuser against the existing cooperative diversity protocol.展开更多
To reduce decoding delay of a communication scheme which is backward-decoding-based and achievable Chong Motani-Garg capacity bounds, a novel forward-sliding-window decoding-based communication scheme is proposed. In ...To reduce decoding delay of a communication scheme which is backward-decoding-based and achievable Chong Motani-Garg capacity bounds, a novel forward-sliding-window decoding-based communication scheme is proposed. In this scheme, if w = (w1, w2) is the message to be sent in block b, the relay will decode message w1 and generate a new message z at the end of block b, and the receiver will decode message w1 at the end of block b + 1 and decode message z and w2 at the end of block b + 2. Analysis results show that this new communication scheme can achieve the same Chong-Motani-Garg bounds and the decoding delay is only two blocks which is much shorter than that of backward decoding. Therefore, Chong-Motani-Garg bounds can be achieved by a forward decoding-based communication scheme with short decoding delay.展开更多
This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on hal...This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on half-duplex mode. Then, we give out receiving diversity relay scheme and coding diversity relay scheme, and present their jointly decoding methods. Furthermore, we discuss the performance of the two schemes with different power allocation coefficients. Simulations show that our relay schemes can achieve different gain with the help of relay node. And, we should allocate power to source node to just guarantee relay node can decode successfully, and allocate remain power to relay node as far as possible. In this way, this DF relay system not only achieves diversity gain, but also achieves higher and smooth spectrum efficiency.展开更多
针对半双工译码转发中继信道,提出了一种可逼近三节点中继信道容量限的空间耦合RA码的设计方法。针对二进制删除信道,源节点分别向中继节点和目的节点发送空间耦合RA码,中继节点先正确恢复出源节点发送的空间耦合RA,然后再次编码产生额...针对半双工译码转发中继信道,提出了一种可逼近三节点中继信道容量限的空间耦合RA码的设计方法。针对二进制删除信道,源节点分别向中继节点和目的节点发送空间耦合RA码,中继节点先正确恢复出源节点发送的空间耦合RA,然后再次编码产生额外的校验比特并转发给目的节点;目的节点结合中继节点发送的额外校验比特和源节点发送的空间耦合RA码进行译码,正确恢复出源节点的信息。为了评估所设计的空间耦合RA码在三节点中继信道下的渐近性能,推导了密度进化算法用于计算阈值。阈值分析结果表明,所提出的空间耦合RA码能够同时逼近源到中继链路和源到目的链路的容量限。同时,基于半双工二进制删除中继信道,仿真了所设计的空间耦合RA码的误码性能,结果表明,其误码性能与所推导的密度进化算法计算的阈值结果一致,呈现出逼近于容量限的优异性能,且优于采用空间耦合低密度奇偶校验(Low Density Parity Check,LDPC)码的性能。展开更多
智能车载协作系统中车辆快速移动使得无线通信信道具有时变特性,为有效评估系统的误码性能,给出了符合车载时变信道的一阶自回归(AR1)模型,提出了一种基于AR1模型的自适应解码转发(ADF)协作误码率分析方法。该方法通过AR1模型的多普勒...智能车载协作系统中车辆快速移动使得无线通信信道具有时变特性,为有效评估系统的误码性能,给出了符合车载时变信道的一阶自回归(AR1)模型,提出了一种基于AR1模型的自适应解码转发(ADF)协作误码率分析方法。该方法通过AR1模型的多普勒频偏相关系数来刻画时变信道特性,根据中继译码结果自适应选择是否协作转发,提升了智能交通系统的可靠性。此外,利用矩生成函数(MGF)推导出ADF协作下多进制正交幅度调制(M-QAM)信号误码率封闭表达式,并分析了车载移动速度和信道状态信息(CSI)估计精度对误码性能的影响。数值仿真结果表明,车载系统能通过增加CSI估计精度,有效地减少车载快速移动引起的误码平顶值。该方法相对于放大转发(AF)协作通信方式,平均误码性能提高约8.7 d B。展开更多
基金Supported by the National Natural Science Foundation of China (No. 60972061,60972062,and 61032004)the National High Technology Research and the Development Program of China ("863" Program) (No. 2008AA12A204)
文摘In this paper,Symbol-Error-Rate(SER) performance analysis is provided for a Decode-and-Forward(DF) cooperative scheme in satellite mobile channel environment.We present a satellite mobile cooperative communication system model and derive two generalized error probability ex-pressions with Cyclical Redundancy Check(CRC) or not.We also derive and simulate SER of the proposed system over different satellite mobile channels.The results show that the analytical results are in great accordance with the ones obtained by simulation.Also,it was shown that,whether or not adopt CRC depends on the channel link quality between the source node and the relay node.
基金supported by the National Natural Science Foundation of China(No.61171099,No.61671080),Nokia Beijing Bell lab
文摘Soft decode-and-forward(DF) can combine the advantages of both amplify-and-forward and hard DF in relay channels. In this paper, we propose a low-complexity soft DF scheme based on polar codes, which features two key techniques: a low-complexity cyclic redundancy check(CRC) aided list successive cancellation(CALSC) decoder and a soft information calculation method. At the relay node, a low-complexity CALSC decoder is designed to reduce the computational complexity by adjusting the list size according to the reliabilities of decoded bits. Based on the path probability metric of the CALSC decoder, we propose a method to compute the soft information of the decoded bits in CALSC. Simulation results show that our proposed scheme outperforms the soft DF based on low-density parity-check codes and the soft DF with belief propagation or soft cancellation decoder, especially in the case when the source-relay channel is at the high signal-to-ratio region.
文摘The present work is a discussion on the performance analysis of Modified Cooperative Subchannel Allocation (CSA) Algorithms which is used in Alamouti Decoded and Forward (Alamouti DF) Relaying Protocol for wireless multi-user Orthogonal Frequency Division Multiplexing Access (OFDMA) systems. In addition, the performance of approximate Symbol Error Rate (SER) for the Alamouti DF Relaying Protocol with the Cooperative Maximum Ratio Combining Technique (C-MRC) is analyzed and compared with SER upper bound. The approximate SER is asymptotically tight bound at higher Signal-to-Noise Ratio (SNR). From the asymptotic tight bound approximate SER, Particle Swarm Optimization (PSO) based Power Allocation (PA) is determined for the Alamouti DF Relaying Protocol. The simulation results suggested that the Modified Throughput based Subchannel Allocation Algorithm achieved an improved throughput of 6% to 33% compared to that of existing cooperative diversity protocol. Further, the Modified Fairness based Subchannel Allocation Algorithm rendered fairness of 7.2% to 17% among the multiuser against the existing cooperative diversity protocol.
基金The Free Research Fund of National Mobile Communi-cations Research Laboratory of Southeast University(No.2008B06)the Na-tional Basic Research Program of China (973 Program)(No.2007CB310603)
文摘To reduce decoding delay of a communication scheme which is backward-decoding-based and achievable Chong Motani-Garg capacity bounds, a novel forward-sliding-window decoding-based communication scheme is proposed. In this scheme, if w = (w1, w2) is the message to be sent in block b, the relay will decode message w1 and generate a new message z at the end of block b, and the receiver will decode message w1 at the end of block b + 1 and decode message z and w2 at the end of block b + 2. Analysis results show that this new communication scheme can achieve the same Chong-Motani-Garg bounds and the decoding delay is only two blocks which is much shorter than that of backward decoding. Therefore, Chong-Motani-Garg bounds can be achieved by a forward decoding-based communication scheme with short decoding delay.
文摘This paper investigates rate adaptation schemes for decoding-and-forward (DF) relay system based on random projections codes (RPC). We consider a classic three node relay system model, where relay node performs on half-duplex mode. Then, we give out receiving diversity relay scheme and coding diversity relay scheme, and present their jointly decoding methods. Furthermore, we discuss the performance of the two schemes with different power allocation coefficients. Simulations show that our relay schemes can achieve different gain with the help of relay node. And, we should allocate power to source node to just guarantee relay node can decode successfully, and allocate remain power to relay node as far as possible. In this way, this DF relay system not only achieves diversity gain, but also achieves higher and smooth spectrum efficiency.
文摘针对半双工译码转发中继信道,提出了一种可逼近三节点中继信道容量限的空间耦合RA码的设计方法。针对二进制删除信道,源节点分别向中继节点和目的节点发送空间耦合RA码,中继节点先正确恢复出源节点发送的空间耦合RA,然后再次编码产生额外的校验比特并转发给目的节点;目的节点结合中继节点发送的额外校验比特和源节点发送的空间耦合RA码进行译码,正确恢复出源节点的信息。为了评估所设计的空间耦合RA码在三节点中继信道下的渐近性能,推导了密度进化算法用于计算阈值。阈值分析结果表明,所提出的空间耦合RA码能够同时逼近源到中继链路和源到目的链路的容量限。同时,基于半双工二进制删除中继信道,仿真了所设计的空间耦合RA码的误码性能,结果表明,其误码性能与所推导的密度进化算法计算的阈值结果一致,呈现出逼近于容量限的优异性能,且优于采用空间耦合低密度奇偶校验(Low Density Parity Check,LDPC)码的性能。
文摘智能车载协作系统中车辆快速移动使得无线通信信道具有时变特性,为有效评估系统的误码性能,给出了符合车载时变信道的一阶自回归(AR1)模型,提出了一种基于AR1模型的自适应解码转发(ADF)协作误码率分析方法。该方法通过AR1模型的多普勒频偏相关系数来刻画时变信道特性,根据中继译码结果自适应选择是否协作转发,提升了智能交通系统的可靠性。此外,利用矩生成函数(MGF)推导出ADF协作下多进制正交幅度调制(M-QAM)信号误码率封闭表达式,并分析了车载移动速度和信道状态信息(CSI)估计精度对误码性能的影响。数值仿真结果表明,车载系统能通过增加CSI估计精度,有效地减少车载快速移动引起的误码平顶值。该方法相对于放大转发(AF)协作通信方式,平均误码性能提高约8.7 d B。