In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we p...In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.展开更多
This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all tr...This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.展开更多
In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from t...In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.展开更多
Based on the existing incremental selection algorithm for Decode-and-Forward (DF) Multiple Input Multiple Output (MIMO) systems, a faster one which combines the incremental selection with the decremental exclussion is...Based on the existing incremental selection algorithm for Decode-and-Forward (DF) Multiple Input Multiple Output (MIMO) systems, a faster one which combines the incremental selection with the decremental exclussion is proposed. Firstly, the algorithm selects one antenna which makes the increment of the capacity greatest in every step. Then, excludes the antennas whose contribution to the capacity is less than μ% of that of the best antenna. Simulations show that the proposed algorithm achieves comparable performance to the existing one and has obviously decreased complexity under the appropriate threshold μ% .展开更多
Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only ...Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only consider a per-subcarrier relay strategy,which treats each subcarrier as a separate channel,which results in significant sum rate loss,especially in fading environments.In this paper,a joint coding scheme over multiple subcarriers is involved for multipair users in two-way relay systems to obtain multiuser diversity.A generalized subcarrier pairing strategy is proposed to permit each user-pair to occupy different subcarriers during the two transmission phases,i.e.,the multiple access and broadcast phases.Moreover,a low complexity joint resource allocation scheme is proposed to improve the spectrum efficiency with an additional multi-user diversity gain.Some numerical simulations are finally provided to verify the efficacy of our proposal.展开更多
A multi-input multi-output(MIMO) separated two-way relay channel(STWRC) is considered,where two users exchange their messages via a relay node.When each link is quasi-static Rayleigh fading,the achievable diversity-mu...A multi-input multi-output(MIMO) separated two-way relay channel(STWRC) is considered,where two users exchange their messages via a relay node.When each link is quasi-static Rayleigh fading,the achievable diversity-multiplexing tradeoff(DMT) of the half-duplex STWRC is analyzed.Firstly,the achievable DMT of the STWRC with static decode-and-forward(DF) protocol is obtained.Then,a dynamic decode-and-forward(DDF) protocol for the STWRC is proposed,where the relay listening time varies dynamically with the channel qualities of the links between two users and the relay.Finally,the achievable DMT of the proposed DDF protocol is derived in a case-bycase manner.Numerical examples are also provided to verify the theoretical analysis of both protocols.展开更多
The distance-decay effect of molecular signals makes communication range a major challenge for diffusion-based Molecular Communication(MC).To solve this problem,the intermediate nano-machine is deployed as a relay bet...The distance-decay effect of molecular signals makes communication range a major challenge for diffusion-based Molecular Communication(MC).To solve this problem,the intermediate nano-machine is deployed as a relay between the transmitter and its intended receiver nano-machines.In this work,we employ the Depleted Molecule Shift Keying(D-MoSK)to model a Decode-and-Forward(DF)relay communication scheme.The closed-form expression of Bit Error Rate(BER)for the concerned DF relay with D-MoSK is derived.Meanwhile,the maximum a posteriori probability,minimum error probability,and maximum likelihood schemes are formulated for data detection.The relationships between BER and other key parameters,including the number of released molecules,receiving radius,and relay position,are investigated in detail.Simulation results show that the proposed scheme can improve communication reliability significantly.Moreover,the performance gain can be maximized by optimizing the position of the relay and the receiving radius.展开更多
In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver comp...In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).展开更多
Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accompl...Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.展开更多
Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attract...Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attracted wide attention.In this paper,a relaying D2D communications assisted with cooperative relaying systems using NOMA(DRC-NOMA)is considered.We analyze the ergodic sum-rate for the proposed system and then derive the closed-form expressions.In addition,an optimal power allocation strategy maximizing the ergodic sum-rate is proposed based on these analysis results.Numerical results show the good agreement between the results of analysis and Monte Carlo method.The proposed DRC-NOMA has a great improvement of the ergodic sum-rate in the small regime of average channel gain of D2D pair.展开更多
Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly...Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uneoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.展开更多
The κ-μ fading model is an advanced channel model in super dense wireless networks.In this paper,we evaluate the performance of the system over κ-μ fading channel in super dense relay networks with consideration o...The κ-μ fading model is an advanced channel model in super dense wireless networks.In this paper,we evaluate the performance of the system over κ-μ fading channel in super dense relay networks with consideration of multiple independent but not necessarily identically distributed(i.n.i.d.) cochannel interference(CCI) under interferencelimited environment.More specifically,we derive a useful and accurate cumulative distribution function(CDF) expression of the end-to-end signal-to-interference plus noise(SINR) ratio.Moreover,we derive novel analytical expressions of the outage probability(OP),average bit error probability(ABEP) and average capacity for binary modulation types and arbitrary positive values of κ-and μ of such system.Furthermore,we propose asymptotic analysis for both the OP and ABEP to give physical insights.A simplified analytical form for the ABEP at high-SNR regimes is provided as well.Finally,the accuracy of the derived expressions is well validated by Monte Carlo simulations.展开更多
Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information...Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information for each other, but each user node has the incentive to consume his power solely to decrease its own symbol error rate (SER) at the receiver. In this paper, we propose a fair and efficient PA scheme for the decode-and-forward cooperation protocol in selfish cooperative relay networks. We formulate this PA problem as a two-user cooperative bargaining game, and use Nash bargaining solution (NBS) to achieve a win-win strategy for both partner users. Simulation results indicate that the NBS is fair in that the degree of cooperation of a user only depends on how much contribution its partner can make to decrease its SER at the receiver, and efficient in the sense that the SER performance of both users could be improved through the game.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62271268,Grant 62071253,and Grant 62371252in part by the Jiangsu Provincial Key Research and Development Program under Grant BE2022800in part by the Jiangsu Provincial 333 Talent Project。
文摘In this paper,we explore a cooperative decode-and-forward(DF)relay network comprised of a source,a relay,and a destination in the presence of an eavesdropper.To improve physical-layer security of the relay system,we propose a jamming aided decodeand-forward relay(JDFR)scheme combining the use of artificial noise and DF relaying which requires two stages to transmit a packet.Specifically,in stage one,the source sends confidential message to the relay while the destination acts as a friendly jammer and transmits artificial noise to confound the eavesdropper.In stage two,the relay forwards its re-encoded message to the destination while the source emits artificial noise to confuse the eavesdropper.In addition,we analyze the security-reliability tradeoff(SRT)performance of the proposed JDFR scheme,where security and reliability are evaluated by deriving intercept probability(IP)and outage probability(OP),respectively.For the purpose of comparison,SRT of the traditional decode-and-forward relay(TDFR)scheme is also analyzed.Numerical results show that the SRT performance of the proposed JDFR scheme is better than that of the TDFR scheme.Also,it is shown that for the JDFR scheme,a better SRT performance can be obtained by the optimal power allocation(OPA)between the friendly jammer and user.
基金supported in part by the National Natural Science Foundation of China under Grant 62201451in part by the Young Talent fund of University Association for Science and Technology in Shaanxi under Grant 20210121+1 种基金in part by the Shaanxi provincial special fund for Technological innovation guidance(2022CGBX-29)in part by BUPT Excellent Ph.D.Students Foundation under Grant CX2022106.
文摘This paper investigates the system outage performance of a simultaneous wireless information and power transfer(SWIPT)based two-way decodeand-forward(DF)relay network,where potential hardware impairments(HIs)in all transceivers are considered.After harvesting energy and decoding messages simultaneously via a power splitting scheme,the energy-limited relay node forwards the decoded information to both terminals.Each terminal combines the signals from the direct and relaying links via selection combining.We derive the system outage probability under independent but non-identically distributed Nakagami-m fading channels.It reveals an overall system ceiling(OSC)effect,i.e.,the system falls in outage if the target rate exceeds an OSC threshold that is determined by the levels of HIs.Furthermore,we derive the diversity gain of the considered network.The result reveals that when the transmission rate is below the OSC threshold,the achieved diversity gain equals the sum of the shape parameter of the direct link and the smaller shape parameter of the terminalto-relay links;otherwise,the diversity gain is zero.This is different from the amplify-and-forward(AF)strategy,under which the relaying links have no contribution to the diversity gain.Simulation results validate the analytical results and reveal that compared with the AF strategy,the SWIPT based two-way relaying links under the DF strategy are more robust to HIs and achieve a lower system outage probability.
基金supported in part by the National Natural Science Foundation of China(No.61401330,No.61371127)
文摘In this paper, we propose the decode-and-forward(DF) based bidirectional wireless information and power transfer(BWIPT) in two-hop relay systems, where the bidirectional relay can decode and forward information from the user to the access point(AP), and assist the wireless power transfer from the AP to the user. To maximize the information rate from the user to the AP, we derive the closed form expression of the optimal power splitting(PS) factor, and the time allocation scheme to obtain the optimal time switching(TS) factor. Simulation results show that for both PS and TS protocols, the proposed DF based bidirectional relay systems can improve the information rate as compared with the amplify-and-forward(AF) based bidirectional relay systems.
基金Supported by the National Natural Science Foundation of Jiangsu Province(No.08KJB510015)
文摘Based on the existing incremental selection algorithm for Decode-and-Forward (DF) Multiple Input Multiple Output (MIMO) systems, a faster one which combines the incremental selection with the decremental exclussion is proposed. Firstly, the algorithm selects one antenna which makes the increment of the capacity greatest in every step. Then, excludes the antennas whose contribution to the capacity is less than μ% of that of the best antenna. Simulations show that the proposed algorithm achieves comparable performance to the existing one and has obviously decreased complexity under the appropriate threshold μ% .
基金supported by the National Natural Science Foundation of China(NSFC)(No.61501527)State’s Key Project of Research and Development Plan(No.2016YFE0122900-3)+1 种基金the Fundamental Research Funds for the Central Universities,Basic Research Foundation of Science Technology and Innovation Commission of Shenzhen Municipality(No.JCYJ20150630153033410)SYSU-CMU Shunde International Joint Research Institute and 2016 Major Project of Collaborative Innovation in Guangzhou(Research and Application of Ground Satellite Communicaiton Systems for Space Broadband Information Networks)
文摘Two-way decode-and-forward(DF) relay technique is an efficient method to improve system performance in 5G networks.However,traditional orthogonal frequency division multiplexing(OFDM) based two-way relay systems only consider a per-subcarrier relay strategy,which treats each subcarrier as a separate channel,which results in significant sum rate loss,especially in fading environments.In this paper,a joint coding scheme over multiple subcarriers is involved for multipair users in two-way relay systems to obtain multiuser diversity.A generalized subcarrier pairing strategy is proposed to permit each user-pair to occupy different subcarriers during the two transmission phases,i.e.,the multiple access and broadcast phases.Moreover,a low complexity joint resource allocation scheme is proposed to improve the spectrum efficiency with an additional multi-user diversity gain.Some numerical simulations are finally provided to verify the efficacy of our proposal.
基金Supported by the National Basic Research Program of China(No.2012CB316100)National Natural Science Foundation of China(No.61072064,61301177)
文摘A multi-input multi-output(MIMO) separated two-way relay channel(STWRC) is considered,where two users exchange their messages via a relay node.When each link is quasi-static Rayleigh fading,the achievable diversity-multiplexing tradeoff(DMT) of the half-duplex STWRC is analyzed.Firstly,the achievable DMT of the STWRC with static decode-and-forward(DF) protocol is obtained.Then,a dynamic decode-and-forward(DDF) protocol for the STWRC is proposed,where the relay listening time varies dynamically with the channel qualities of the links between two users and the relay.Finally,the achievable DMT of the proposed DDF protocol is derived in a case-bycase manner.Numerical examples are also provided to verify the theoretical analysis of both protocols.
基金This paper was supported in part by the National Natural Science Foundation of China under No.61921003,61925101,and 61831002the State Major Science and Technology Special Project(Grant No.2018ZX03001023)+3 种基金the Beijing Natural Science Foundation under No.JQ18016,and the National Program for Special Support of Eminent ProfessionalsThis paper was also supported by the Doctoral Research Fund of North China Institute of Aerospace Engineering under No.BKY-2021-17the North China Institute of Aerospace Engineering Foundation Project under No.KY-2021-2Langfang Science Technology Research&Development Plan Project under No.2020019002C.
文摘The distance-decay effect of molecular signals makes communication range a major challenge for diffusion-based Molecular Communication(MC).To solve this problem,the intermediate nano-machine is deployed as a relay between the transmitter and its intended receiver nano-machines.In this work,we employ the Depleted Molecule Shift Keying(D-MoSK)to model a Decode-and-Forward(DF)relay communication scheme.The closed-form expression of Bit Error Rate(BER)for the concerned DF relay with D-MoSK is derived.Meanwhile,the maximum a posteriori probability,minimum error probability,and maximum likelihood schemes are formulated for data detection.The relationships between BER and other key parameters,including the number of released molecules,receiving radius,and relay position,are investigated in detail.Simulation results show that the proposed scheme can improve communication reliability significantly.Moreover,the performance gain can be maximized by optimizing the position of the relay and the receiving radius.
基金supported in part by the National Natural Science Foundation of China under Grant 92067202,Grant 62071058.
文摘In this paper,we propose an arbitrary decode-forward single-relay scheme for finite blocklength polar codes,which can be applied to the general symmetric discrete memoryless relay channel with orthogonal receiver components.The relay node decodes the received message.The relay node selectively re-encodes the message and transmits it to the destination node.Furthermore,in order to minimize the upper-bound of the block error probability,we propose a selection strategy to decide the proper re-encoded bit set by the relay.Simulation results are presented to illustrate the improvement in decoding performance of the proposed scheme compared to conventional relay schemes in both additive white Gaussian noise(AWGN)channel and Rayleigh fading channel(RFC).
基金supported in part by the National Natural Science Foundation of China under Grants 61971149,61431005,and 61971198in part by the Natural Science Foundation of Guangdong Province under Grant 2016A030308006+1 种基金in part by the Guangdong Basic and Applied Basic Research Foundation under Grant 2019A1515011040in part by the Young Innovative Talents Project of Guangdong Province under Grant 2018GkQNCX118.
文摘Non-orthogonal multiple access(NOMA)technique is an expert on channel differences exploiting.In this paper,a dual-hop NOMA-based cooperative relaying network where a best relay is selected as an active node to accomplish the communication between a source and a destination is discussed.We assume that both decode-and-forward(DF)and amplify-and-forward(AF)protocols are applied to the selected relay.The metrics that ergodic sum-rate and outage probability are investigated,and the closed-form expressions of the latter for DF and AF protocols are derived.Numerical and simulation results are conducted to verify the validity of the theoretical analysis,in which we can see that the NOMA based DF relaying is better than the NOMA based AF relaying and other existing NOMA-based cooperative communication schemes.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 61701201,U1805262,61871446 and 62071247the Natural Science Foundation of Jiangsu Province(No.BK20170758),Six talent peaks project in Jiangsu Province.
文摘Non-orthogonal multiple access(NOMA)is considered as one of the key technologies for the fifth generation(5G)wireless communications.The integration of NOMA and device-to-device(D2D)communications has recently attracted wide attention.In this paper,a relaying D2D communications assisted with cooperative relaying systems using NOMA(DRC-NOMA)is considered.We analyze the ergodic sum-rate for the proposed system and then derive the closed-form expressions.In addition,an optimal power allocation strategy maximizing the ergodic sum-rate is proposed based on these analysis results.Numerical results show the good agreement between the results of analysis and Monte Carlo method.The proposed DRC-NOMA has a great improvement of the ergodic sum-rate in the small regime of average channel gain of D2D pair.
文摘Bilayer low-density parity-check (LDPC) codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uneoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.
基金supported by the NSFC project under grant No. 61101237the Fundamental Research Funds for the Central Universities No. 2014JBZ001China Postdoctoral Science Foundation No. 2014M560081
文摘The κ-μ fading model is an advanced channel model in super dense wireless networks.In this paper,we evaluate the performance of the system over κ-μ fading channel in super dense relay networks with consideration of multiple independent but not necessarily identically distributed(i.n.i.d.) cochannel interference(CCI) under interferencelimited environment.More specifically,we derive a useful and accurate cumulative distribution function(CDF) expression of the end-to-end signal-to-interference plus noise(SINR) ratio.Moreover,we derive novel analytical expressions of the outage probability(OP),average bit error probability(ABEP) and average capacity for binary modulation types and arbitrary positive values of κ-and μ of such system.Furthermore,we propose asymptotic analysis for both the OP and ABEP to give physical insights.A simplified analytical form for the ABEP at high-SNR regimes is provided as well.Finally,the accuracy of the derived expressions is well validated by Monte Carlo simulations.
基金supported by National Natural Science Foundation of China (No. 60972059)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+3 种基金Fundamental Research Funds for the Central Universities of China (Nos. 2010QNA27 and 2011QNB26)China Postdoctoral Science Foundation (No. 20100481185)the Ph. D. Programs Foundation of Ministry of Education of China (Nos. 20090095120013 and 20110095120006)Talent Introduction Program, and Young Teacher Sailing Program of China University of Mining and Technology
文摘Wireless cooperative communications require appropriate power allocation (PA) between the source and relay nodes. In selfish cooperative communication networks, two partner user nodes could help relaying information for each other, but each user node has the incentive to consume his power solely to decrease its own symbol error rate (SER) at the receiver. In this paper, we propose a fair and efficient PA scheme for the decode-and-forward cooperation protocol in selfish cooperative relay networks. We formulate this PA problem as a two-user cooperative bargaining game, and use Nash bargaining solution (NBS) to achieve a win-win strategy for both partner users. Simulation results indicate that the NBS is fair in that the degree of cooperation of a user only depends on how much contribution its partner can make to decrease its SER at the receiver, and efficient in the sense that the SER performance of both users could be improved through the game.