期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
A modified back analysis method for deep excavation with multi-objective optimization procedure
1
作者 Chenyang Zhao Le Chen +2 位作者 Pengpeng Ni Wenjun Xia Bin Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1373-1387,共15页
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ... Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task. 展开更多
关键词 Multi-objective optimization Back analysis Surrogate model Multi-objective particle swarm optimization(MOPSO) deep excavation
下载PDF
Lessons learnt from a deep excavation for future application of the observational method
2
作者 Raul Fuentes Anton Pillai Pedro Ferreira 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第3期468-485,共18页
This paper draws lessons learnt from a comprehensive case study in overconsolidated clay. Apart from the introduction of the case study, including field measurements, the paper draws on the observations and a three-di... This paper draws lessons learnt from a comprehensive case study in overconsolidated clay. Apart from the introduction of the case study, including field measurements, the paper draws on the observations and a three-dimensional(3 D) numerical analysis to discuss the implications of observations in the application of the observational method(OM) in the context of the requirements of EUROCODE 7(EC7).In particular, we focus on corner effects and time-dependent movements and provide initial guidance on how these could be considered. Additionally, we present the validation of a new set of parameters to check that it provides a satisfactory compliance with EC7 as a set of design parameters. All these findings and recommendations are particularly important for those who want to use the OM in similar future projects. 展开更多
关键词 deep excavation BASEMENT Ground movements Wall movements Retaining wall Corner effects Time-dependent movements
下载PDF
A post-peak dilatancy model for soft rock and its application in deep tunnel excavation 被引量:1
3
作者 Wuqiang Cai Hehua Zhu +3 位作者 Wenhao Liang Xiaojun Wang Chenlong Su Xiangyang Wei 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期683-701,共19页
The dilation angle is the most commonly used parameter to study nonlinear post-peak dilatancy(PPD)behavior and simulate surrounding rock deformation;however,simplified or constant dilatancy models are often used in nu... The dilation angle is the most commonly used parameter to study nonlinear post-peak dilatancy(PPD)behavior and simulate surrounding rock deformation;however,simplified or constant dilatancy models are often used in numerical calculations owing to their simple mathematical forms.This study developed a PPD model for rocks(rock masses)based on the Alejanoe-Alonso(A-A)dilatancy model.The developed model comprehensively reflects the influences of confining pressure(σ_(3))and plastic shear strain(γ^(p)),with the advantages of a simple mathematical form,while requiring fewer parameters and demonstrating a clear physical significance.The overall fitting accuracy of the PPD model for 11 different rocks was found to be higher than that of the A-A model,particularly for Witwatersrand quartzite and jointed granite.The applicability and reliability of the PPD model to jointed granites and different scaled Moura coals were also investigated,and the model was found to be more suitable for the soft and large-scale rocks,e.g.deep rock mass.The PPD model was also successfully applied in studying the mechanical response of a circular tunnel excavated in strain-softening rock mass,and the developed semi-analytical solution was compared and verified with existing analytical solutions.The sensitivities of the rock dilatancy to γ^(p) and σ_(3) showed significant spatial variabilities along the radial direction of the surrounding rock,and the dilation angle did not exhibit a monotonical increasing or decreasing law from the elasticeplastic boundary to the tunnel wall,thereby presenting the σ3-or γ^(p)-dominated differential effects of rock dilatancy.Tunnel deformation parabolically or exponentially increased with increasing in situ stress(buried depth).The developed PPD model is promising to conduct refined numerical and analytical analyses for deep tunneling,which produces extensive plastic deformation and exhibits significant nonlinear post-peak behavior. 展开更多
关键词 deep excavation Post-peak dilatancy(PPD)model AlejanoeAlonso(AeA)dilatancy model Soft rock
下载PDF
Performance of a deep excavation and the influence on adjacent piles:A case history in karst region covered by clay and sand
4
作者 Yubing Yang Caiyuan Chen +5 位作者 Chao Liu Longtian Huang Wei Chen Nengyou Lin Jie Cui Wandong Xie 《Underground Space》 SCIE EI CSCD 2023年第1期45-60,共16页
This paper presents a case study of deep excavation adjacent to an existing bridge in karst region of Guangzhou city,China.The movements of retaining structures,settlements of surrounding ground and pipelines,and the ... This paper presents a case study of deep excavation adjacent to an existing bridge in karst region of Guangzhou city,China.The movements of retaining structures,settlements of surrounding ground and pipelines,and the responses of bridge piles were measured and evaluated.A sudden surge of groundwater was recorded at the north pit when excavated halfway.Soil-cement columns using the Metro Jet System(MJS)method was employed along the outer perimeters of the diaphragm wall where water inflow occurred,for the sake of blocking the flow channels.The measured maximum wall deflection dhm in this case ranged from 0.13%H to 0.3%H,with a mean value of 0.2%H(H is the excavation depth),which agreed well with the empirical prediction in mixed ground.During the MJS treatment,the wall and surrounding soils experienced notable lateral deflection and settlement.The bridge piles experienced significant settlement since the excavation commenced,which might be attributed to the inherent deficiency in geological condition and pile length.The soil disturbance induced by the adjacent deep excavation accelerated bridge settlement.The finite element analysis revealed that the excessive settlement of the bridge piles and ground surface resulted from confined-water withdrawal in sand layers. 展开更多
关键词 deep excavation MJS treatment Pile-foundation Karst region Confined-water
原文传递
Reliability assessment of deep excavations in spatially random cohesion weakening friction strengthening massive rocks:Application to nuclear repositories
5
作者 Akshay Kumar Gaurav Tiwari 《Underground Space》 SCIE EI CSCD 2023年第6期48-73,共26页
An augmented methodology is developed to estimate the reliability of deep excavations along spatially variable massive rock masses using the cohesion weakening friction strengthening(CWFS)model.Sensitive parameters of... An augmented methodology is developed to estimate the reliability of deep excavations along spatially variable massive rock masses using the cohesion weakening friction strengthening(CWFS)model.Sensitive parameters of the CWFS model were initially identified using Sobol’s global sensitivity analysis based on their influence on the displacements and excavation damage zone around excavations.The probability of failure was estimated by performing Mont–Carlo Simulations on random finite difference models of excavations generated via MATLAB-FLAC2D coupling,considering the spatial variation of these sensitive parameters.Spatial variation was modeled by generating anisotropic random fields of sensitive CWFS parameters via the recently developed Fourier series method and updated correlations suggested by Walton(2019).The proposed methodology was demonstrated for a proposed deep nuclear waste repository to be located in Canada.Results from the developed methodology were systematically compared with those of traditional reliability(ignoring spatial variation)and deterministic methods(ignoring uncertainty).Although the developed methodology was computationally complex,it was judged to be the most realistic due to the realistic consideration of heterogeneous distributions of rock properties.Traditional methodologies underestimate/overestimate the excavation performance due to negligence of uncertainty and spatial variability.Finally,a parametric analysis was performed using developed methodology by varying the initial friction angle,scale of fluctuations(SOFs)and dilation angle.The effect of initial friction angle was observed to be more pronounced on the probability of failures as compared to SOFs and dilation angle.Similar observations were made related to the excavation damage zone(EDZ)development quantified using yield area ratio. 展开更多
关键词 deep excavations Brittle failures CWFS model Sobol’s sensitivity Moving least square response surface Fourier series random field
原文传递
Deterministic and probabilistic analysis of great-depth braced excavations:A 32 m excavation case study in Paris
6
作者 Tingting Zhang Julien Baroth +1 位作者 Daniel Dias Khadija Nejjar 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1505-1521,共17页
The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic fra... The Fort d’Issy-Vanves-Clamart(FIVC)braced excavation in France is analyzed to provide insights into the geotechnical serviceability assessment of excavations at great depth within deterministic and probabilistic frameworks.The FIVC excavation is excavated at 32 m below the ground surface in Parisian sedimentary basin and a plane-strain finite element analysis is implemented to examine the wall deflections and ground surface settlements.A stochastic finite element method based on the polynomial chaos Kriging metamodel(MSFEM)is then proposed for the probabilistic analyses.Comparisons with field measurements and former studies are carried out.Several academic cases are then conducted to investigate the great-depth excavation stability regarding the maximum horizontal wall deflection and maximum ground surface settlement.The results indicate that the proposed MSFEM is effective for probabilistic analyses and can provide useful insights for the excavation design and construction.A sensitivity analysis for seven considered random parameters is then implemented.The soil friction angle at the excavation bottom layer is the most significant one for design.The soil-wall interaction effects on the excavation stability are also given. 展开更多
关键词 Braced deep excavation Soil-wall interaction Stochastic finite element method Horizontal wall deflection SETTLEMENT Failure probability
下载PDF
Construction Technology and Safety Risk Control Measures of Deep Foundation Pit Excavation
7
作者 Mingmin Jiang 《Journal of World Architecture》 2023年第2期24-29,共6页
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t... Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits. 展开更多
关键词 Construction engineering deep foundation pit excavation Construction technology Risk prevention and control measures
下载PDF
Numerical analysis on zone-divided deep excavation in soft clays using a new small strain elasto–plastic constitutive model 被引量:1
8
作者 Afnan Younis Tanoli Bin Yan +3 位作者 Yong-lin Xiong Guan-lin Ye Usama Khalid Zhong-hua Xu 《Underground Space》 SCIE EI 2022年第1期19-36,共18页
Accurate prediction of displacements associated with deep excavations is essential to ensure safety and stability of the excavation and to prevent any damage and distress to the adjoining infrastructures.This paper pr... Accurate prediction of displacements associated with deep excavations is essential to ensure safety and stability of the excavation and to prevent any damage and distress to the adjoining infrastructures.This paper presents a numerical approach for prediction of ground displacements related to a zone-divided deep excavation construction executed in Shanghai soft clays based on a new elasto–plastic con-stitutive model(small-strain Shanghai model)that incorporates small strain stiffness.This model can describe the mechanical properties and structural and over-consolidated characteristics of natural clays.The model is implemented into a finite element analysis software.Numerical analysis on the deep excavation in Shanghai using zone-divided method is conducted.A comparison between monitored and simulated results of horizontal displacements along the diaphragm wall,the settlements in the surroundings,and the effects on the adjoin-ing metro tunnel due to excavation construction is carried out.Special attention is paid to the stiffness degradation of representative elements in the ground.The simulated displacements show a good agreement with the monitored data.Overall,this study provides an integrated solution for predicting displacements related to deep excavation in soft clays. 展开更多
关键词 deep excavation Soft clays Small strain Elasto-plastic model Ground displacements Metro tunnels
原文传递
Deep excavation in under-consolidated clayey deposit 被引量:1
9
作者 Jinchun Chai Junfeng Ni +2 位作者 Wenqi Ding Yafei Qiao Xingbang Lu 《Underground Space》 SCIE EI 2021年第4期455-468,共14页
In this study,a deep excavation in an under-consolidated deposit in Zhuhai,China,was reported and investigated via plane strain finite element analysis(FEA).First,the project was simulated via FEA(under-consolidated d... In this study,a deep excavation in an under-consolidated deposit in Zhuhai,China,was reported and investigated via plane strain finite element analysis(FEA).First,the project was simulated via FEA(under-consolidated deposit),and a reasonable agreement between the lateral displacement of the measured and simulated retaining wall was obtained.Another FEA was then conducted under the assumption that the deposit was in a normally consolidated state.The numerical results indicate that the under-consolidated case resulted in a 25% increase in maximum lateral displacement of the contiguous pile-formed retaining wall,a 32% increase in bending moment in the wall,and approximately twice the maximum surface settlement behind the wall,when compared with those of the normally consolidated case.The main reasons for this are as follows:(1)the under-consolidated deposit was weaker,and(2)the ongoing consolidation of the under-consolidated deposit induced green-field settlement(approximately 4 mm)during the project period,thereby enhancing the bending deformation of the wall.Therefore,when designing deep excavation in an under-consolidated deposit,not only its weaker strength but also the negative effect of green-field settlement during the project period should be considered. 展开更多
关键词 deep excavation Under-consolidated state Clayey deposit FEA Bending moment
原文传递
Tunneling and deep excavations in spatially variable soil and rock masses:A short review 被引量:1
10
作者 Wengang Zhang Liang Han +3 位作者 Xin Gu Lin Wang Fuyong Chen Hanlong Liu 《Underground Space》 SCIE EI 2022年第3期380-407,共28页
In an urbanization process,infrastructure elements such as tunnels and deep excavations are widely used to service the development of cities.Owing to the lengthy geological processes of geomaterials and the limited av... In an urbanization process,infrastructure elements such as tunnels and deep excavations are widely used to service the development of cities.Owing to the lengthy geological processes of geomaterials and the limited availability of site-specific test data,soil and rock properties exhibiting spatial variability are frequently encountered in geological and geotechnical engineering.This paper presents a comprehensive review of the application of spatial variability in tunneling and deep excavation over the past 20 years.It is found that the spatial variability is generally modeled as a random field(RF)in finite element software,based on random field theory(RFT).This model has been widely used in the design,stability evaluation,and probabilistic analysis of tunnels and excavations.Previous works have proven that the performance of tunnels and deep excavations can be better captured by considering the spatial variability,as compared with conventional deterministic analysis methods.Nonetheless,current research still faces many factual scientific problems.Therefore,this paper also identifies some research gaps,as well as recommendations for further investigations. 展开更多
关键词 Spatial variability TUNNELING deep excavation Random field Probabilistic analysis
原文传递
Responses of the Strata and Supporting System to Dewatering in Deep Excavations
11
作者 肖潇 张扬清 +1 位作者 李明广 王建华 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第6期705-711,共7页
In order to prevent the inrushing caused by deep excavations, dewatering measure has to be adopted to decrease the confined water level. In this study, the responses of the strata and supporting system to dewatering i... In order to prevent the inrushing caused by deep excavations, dewatering measure has to be adopted to decrease the confined water level. In this study, the responses of the strata and supporting system to dewatering in deep excavations are investigated through numerical simulations and case studies. Coupled fluid-mechanical analyses are performed by the use of the numerical software, FLAC3 D. The responses of the ground settlement,base heave and interior columns to the excavation and dewatering are analyzed. Numerical results indicate that the dewatering measure can effectively reduce the uplift of the subsurface soil in the excavation, and decrease the vertical displacement of the supporting system. In addition, field data of two case histories show the similar responses and confirm the validation of the numerical results. Based on the analyses, dewatering in the confined aquifer is recommended as a construction method for controlling the vertical displacement of the strata and supporting system in deep excavations. 展开更多
关键词 deep excavations COLUMN confined water numerical simulation dewatering measure
原文传递
Case study of post uplift in deep excavation of a subway station in thick soft clay using long pile foundations
12
作者 Yanbin Gao Zhouxiang Ding 《Underground Space》 SCIE EI 2022年第2期254-267,共14页
There is growing engineering concern about the base heave and post uplift phenomena in deep excavation in soft clay,which may pose a risk of instability of retaining systems.The purpose here is to conduct a detailed c... There is growing engineering concern about the base heave and post uplift phenomena in deep excavation in soft clay,which may pose a risk of instability of retaining systems.The purpose here is to conduct a detailed case study on the post uplift observed in a 17.6-meterdeep braced excavation of a subway station in thick soft clay(total thickness up to 42 m)in Shanghai.In this case,a large uplift up to 87 mm unexpectedly developed for the post founded on a 30-meter-long pile foundation.Efforts were first made to examine the complex relationships between the post uplift with the excavation depth(H),Terzaghi’s safety factor against base heave(Fs)and maximum deflection of retaining wall.A simplified approach for soil-post-strut interaction analysis was then proposed and used for quantitative research.The working characteristics of the long pile foundation under low safety factor against base heave(Fs<1.5)are summarized as following:(a)the back-analyzed neutral plane,where soil uplift equals the post uplift,lies at approximately 0.68 times the pile length from the pile top;(b)deep soil movement below the neutral plane results in the observed post uplift;(c)strut reaction plays a minor role in the restriction of post uplift.The influence of base treatment and excavation/construction procedures on post uplift and the principles of pile foundation design are also discussed in this paper. 展开更多
关键词 Post uplift deep excavation Field observations Neutral plane Soft clay Pile foundation
原文传递
Prediction of Rock Burst with Deep Mining Excavation in Linglong Gold Mine 被引量:3
13
作者 Meifeng Cai, Jinan Wang, Shuanghong Wang Civil and Environmental Engineering School, University of Science and Technology Beijing, Beijing 100083. China 《Journal of University of Science and Technology Beijing》 CSCD 2001年第4期241-243,共3页
To predict rock burst in deep mining excavation in Linglong gold mine, systematical laboratory tests of mechanical properties of rock, in situ stress measurement and 3-D FEM analysis on energy distribution in rock mas... To predict rock burst in deep mining excavation in Linglong gold mine, systematical laboratory tests of mechanical properties of rock, in situ stress measurement and 3-D FEM analysis on energy distribution in rock mass surrounding deep mining rooms were carried out. According to various prediction criteria of rock burst, it is concluded that rock burst is liable to occur during deep mining excavation in the mine. 展开更多
关键词 rock burst PREDICTION deep mining excavation Linglong gold mine
下载PDF
Deep Foundation Pit Excavations Adjacent to Disconnected Piled Rafts: A Review on Risk Control Practice
14
作者 Bantayehu Uba Uge Yuancheng Guo 《Open Journal of Civil Engineering》 2020年第3期270-300,共31页
Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or t... Foundation pit excavation engineering is an old subject full of decision making. Yet, it still deserves further research due to the associated high failure cost and the complexity of the geological conditions and/or the surrounding existing infrastructure around it. This article overviews the risk control practice of foundation pit excavation projects in close proximity to <span style="font-family:Verdana;">existing</span><span style="font-family:Verdana;"> disconnected piled raft. More focus is given to geotechnical aspects. The review begins with achievements to ensure excavation performance </span><span style="font-family:Verdana;">requirements,</span><span style="font-family:Verdana;"> and follows to discuss the complex </span><span style="font-family:Verdana;">soil structure</span><span style="font-family:Verdana;"> interaction involved among the fundamental components</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">: </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">the retaining wall, mat, piles, cushion, and the soil. After bringing consensus points to practicing engineers and </span><span style="font-family:Verdana;">decision makers</span><span style="font-family:Verdana;">, it then suggests possible future research directions.</span></span></span></span> 展开更多
关键词 deep Foundation Pit excavation Disconnected Piled Raft Foundation Risk Control Observational Method
下载PDF
Research on Robotized Advance Support and Supporting Time for Deep Fully Mechanized Excavation Roadway
15
作者 LI Sanxi QIAO Hongbing XUE Guanghui 《Instrumentation》 2021年第1期61-73,共13页
To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit... To keep coal workers away from the hazardous area with frequent accidents such as the roof fall and rib spalling in an underground coalmine,we put forward the solution with robotized self-moving anchor-supporting unit.The existing research shows that the surrounding rock of the roadway has self-stability,and the early or late support is not conducive to the safe and reliable support of the roadway,so there is a problem of support opportunity.In order to study the supporting effect and the optimal supporting time of the above solution,we established the mechanical coupling model of surrounding rock and advance support,and investigated the surrounding rock deformation and advance support pressure distribution under different reserved roof subsidence by using the numerical simulation software FLAC3D.The results show that the deformation of surrounding rock increases and finally tends to a stable level with the increase of pre settlement of roadway roof,and when the pre settlement of roof is between 8-15 mm,the vertical pressure of the top beam of advance support reaches the minimum value,about 0.58 MPa.Based on the above research,we put forward the optimum supporting time in roadway excavation,and summarized the evaluation method based on the mechanical coupling model of surrounding rock-advance support. 展开更多
关键词 Coalmine Safety Robotized Advance Support Optimum Supporting Time deep Fully Mechanized excavation Roadway Mechanical Coupling Model
下载PDF
Effects of jet grouting slabs on responses for deep braced excavations 被引量:1
16
作者 Wengang Zhang Li Hong +3 位作者 Yongqin Li Runhong Zhang Anthony T.C.Goh Hanlong Liu 《Underground Space》 SCIE EI 2021年第2期185-194,共10页
Jet grouting slabs are widely used in deep excavations owing to their effectiveness for reducing the deflection of the diaphragm wall and the prop forces acting on the struts and improving the basal-heave stability.In... Jet grouting slabs are widely used in deep excavations owing to their effectiveness for reducing the deflection of the diaphragm wall and the prop forces acting on the struts and improving the basal-heave stability.In this paper,according to case histories in Singapore,a series of finite-element numerical simulations are performed to evaluate the effects of jet grouting slabs on responses to deep braced excavations.On the basis of a parametric sensitivity study,a reasonable thickness of jet grouting slabs is proposed.The effects of the wall depth,wall stiffness,soft-clay thickness,and stiffness on the performance of the jet grouting slabs are assessed by comparing and analyzing a series of simulation results.It is found that the soft-clay thickness significantly affects the wall deflection and basal heave in deep excavation.During the design of support structures,soil profiles should be considered first.The findings of this study provide a reference and guidance for the support system design of similar projects. 展开更多
关键词 Jet grouting slab deep excavation Soft clay Finite-element analysis
原文传递
Shanghai center project excavation induced ground surface movements and deformations 被引量:3
17
作者 Guolin XU Jiwen ZHANG +1 位作者 Huang LIU Changqin REN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2018年第1期26-43,共18页
Empirical data on deep urban excavations can provide designers a significant reference basis for assessing potential deformations of the deep excavations and their impact on adjacent structures. The construction of th... Empirical data on deep urban excavations can provide designers a significant reference basis for assessing potential deformations of the deep excavations and their impact on adjacent structures. The construction of the Shanghai Center involved excavations in excess of 33-m-deep using the top-down method at a site underlain by thick deposits of marine soft clay. A retaining system was achieved by 50-m-deep diaphragm walls with six levels of struts. During construction, a comprehensive instrumentation program lasting 14 months was conducted to monitor the behaviors of this deep circular excavation. The following main items related to ground surface movements and deformations were collected: (1) walls and circumferential soils lateral movements; (2) peripheral soil deflection in layers and ground settlements; and (3) pit basal heave. The results from the field instrumentation showed that deflections of the site were strictly controlled and had no large movements that might lead to damage to the stability of the foundation pit. The field performance of another 21 cylindrical excavations in top-down method were collected to compare with this case through statistical analysis. In addition, numerical analyses were conducted to compare with the observed data. The extensively monitored data are characterized and analyzed in this paper. 展开更多
关键词 deep excavation foundation pit soft clay top-down method field observation ground surface movements ground deformations
原文传递
Experimental investigation on the deformation characteristics of locking-steel-pipe(LSP)pile retaining structure during excavation in sand 被引量:1
18
作者 Shi Wei Rongzhu Liang +6 位作者 Guoxiong Mei M.Hesham El Naggar Lianwei Sun Jinqing Jia Xiaohua Bao Xiaojian Wu Wenbing Wu 《Underground Space》 SCIE EI 2022年第6期1098-1114,共17页
Locking-steel-pipe(LSP)piles connect with adjacent joints to form a pile row enclosure structure.Due to the advantages of quick construction,efficiency in installation,and recycle utilization,the connected LSP piles a... Locking-steel-pipe(LSP)piles connect with adjacent joints to form a pile row enclosure structure.Due to the advantages of quick construction,efficiency in installation,and recycle utilization,the connected LSP piles are frequently used as retaining structure in deep excavation.However,systematic studies of the deformation mechanism of the LSP pile retaining structure are rarely reported,and it still lack of experimental evidence to optimize the design.In this study,a braced supported excavation experimental model test in sand was designed and conducted to investigate the deformation characteristics of LSP pile retaining structure.Three dimensional(3D)printing technique was creatively applied to manufacture LSP model piles.The experimental results show that,a“S”shaped distribution of bending moments is observed along pile shaft when excavation is executed;the deflection of pile shaft develops deep-seated movements toward the excavation side as excavation went deeper,resulting in a“bowl”ground settlement.With the deflection of LSP piles,a rotating trend was occurred between pairs of locking joint,and the severe open deformation of locking joint arose on excavation side.There was a gradual reduction in earth pressure behind the LSP pile retaining wall with excavation depth.The earth pressure between two struts level had no obvious changing,owing to the supported effect of inner struts. 展开更多
关键词 Locking-steel-pipe(LSP)piles deep excavation Model test Deformation characteristics Three dimensional(3D)printing
原文传递
Influencing factors and control measures of excavation on adjacent bridge foundation based on analytic hierarchy process and finite element method 被引量:5
19
作者 Shuangxi FENG Huayang LEI +2 位作者 Yongfeng WAN Haiyan JIN Jun HAN 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第2期461-477,共17页
Many uncertain factors in the excavation process may lead to excessive lateral displacement or overlimited internal force of the piles,as well as inordinate settlement of soil surrounding the existing bridge foundatio... Many uncertain factors in the excavation process may lead to excessive lateral displacement or overlimited internal force of the piles,as well as inordinate settlement of soil surrounding the existing bridge foundation.Safety control is pivotal to ensuring the safety of adjacent structures.In this paper,an innovative method is proposed that combines an analytic hierarchy process(AHP)with a finite element method(FEM)to reveal the potential impact risk of uncertain factors on the surrounding environment.The AHP was adopted to determine key influencing factors based on the weight of each influencing factor.The FEM was used to quantify the impact of the key influencing factors on the surrounding environment.In terms of the AHP,the index system of uncertain factors was established based on an engineering investigation.A matrix comparing the lower index layer to the upper index layer,and the weight of each influencing factor,were calculated.It was found that the excavation depth and the distance between the foundation pit and the bridge foundation were fundamental factors.For the FEM,the FE baseline model was calibrated based on the case of no bridge surrounding the foundation pit.The consistency between the monitoring data and the numerical simulation data for a ground settlement was analyzed.FE simulations were then conducted to quantitatively analyze the degree of influence of the key influencing factors on the bridge foundation.Furthermore,the lateral displacement of the bridge pile foundation,the internal force of the piles,and the settlement of the soil surrounding the pile foundation were emphatically analyzed.The most hazardous construction condition was also determined.Finally,two safety control measures for increasing the numbers of support levels and the rooted depths of the enclosure structure were suggested.A novel method for combining AHP with FEM can be used to determine the key influencing aspects among many uncertain factors during a construction,which can provide some beneficial references for engineering design and construction. 展开更多
关键词 deep foundation pit excavation adjacent bridge foundation influencing factors analytic hierarchy process finite element
原文传递
Numerical study on rock failure around a tunnel destressed by a conceptualized notched technique 被引量:2
20
作者 Amin Manouchehrian Pinnaduwa H.S.W.Kulatilake 《Underground Space》 SCIE EI 2022年第6期1086-1097,共12页
A destressing method for reducing the strainburst risk in burst-prone grounds is suggested.In this method,the rock is destressed by cutting notches at the excavation boundary.First,the concept of the proposed method i... A destressing method for reducing the strainburst risk in burst-prone grounds is suggested.In this method,the rock is destressed by cutting notches at the excavation boundary.First,the concept of the proposed method is described both analytically and numerically.Then,the method is applied to a tunneling problem.Several numerical models are built to study the destressing process and the failure mechanism around a circular tunnel.Results show that when the notch is added to the model,the rock at the tunnel wall is destressed,and the stress concentration zones shift to a farther distance away from the wall.Also,the analysis of the failure zone around the tunnel and the velocity of the failed elements show that the failure in the notched tunnel is less violent compared to that in the tunnel without the notch.Finally,a parametric study is conducted to investigate the influences of the notch dimensions on the stress distribution,deformation,and failures around the tunnel. 展开更多
关键词 Strainburst DESTRESSING deep excavation Notched tunnel Rock violent failure
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部