A reasonable parameter configuration helps improve the data transmission performance of the Licklider Transmission Protocol(LTP).Previous research has focused mainly on parameter optimization for LTP in simplified sce...A reasonable parameter configuration helps improve the data transmission performance of the Licklider Transmission Protocol(LTP).Previous research has focused mainly on parameter optimization for LTP in simplified scenarios with one to two hops or multihop scenarios with a custody mechanism of the Bundle Protocol(BP).However,the research results are not applicable to communications in Complex Deep Space Networks(CDSNs)without the custody mechanism of BP that are more suitable for deep space communications with LTP.In this paper,we propose a model of file delivery time for LTP in CDSNs.Based on the model,we propose a Parameter Optimization Design Algorithm for LTP(LTP-PODA)of configuring reasonable parameters for LTP.The results show that the accuracy of the proposed model is at least 6.47%higher than that of the previously established models based on simple scenarios,and the proposed model is more suitable for CDSNs.Moreover,the LTP parameters are optimized by the LTP-PODA algorithm to obtain an optimization plan.Configuring the optimization plan for LTP improves the protocol transmission performance by at least 18.77%compared with configuring the other parameter configuration plans.展开更多
With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an i...With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an important foundation and inevitable development trend of future deepspace communication. In this paper, we design a deep space node model which is capable of combining the space division multiplexing with frequency division multiplexing. Furthermore, we propose the directional flooding routing algorithm(DFRA) for DSON based on our node model. This scheme selectively forwards the data packets in the routing, so that the energy consumption can be reduced effectively because only a portion of nodes will participate the flooding routing. Simulation results show that, compared with traditional flooding routing algorithm(TFRA), the DFRA can avoid the non-directional and blind transmission. Therefore, the energy consumption in message routing will be reduced and the lifespan of DSON can also be prolonged effectively. Although the complexity of routing implementation is slightly increased compared with TFRA, the energy of nodes can be saved and the transmission rate is obviously improved in DFRA. Thus the overall performance of DSON can be significantly improved.展开更多
Deep space communications has played an important role in deep space exploration. Compared with common satellite and terrestrial communications, deep space communications faces more challenging environment. The paper ...Deep space communications has played an important role in deep space exploration. Compared with common satellite and terrestrial communications, deep space communications faces more challenging environment. The paper investigated the unique features of deep space communica-tions in detail, discussed the key technologies and its development trends for deep space communica-tions.展开更多
正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术凭借对多普勒频移的优良抗性,保证了高动态场景下的可靠性通信。与大多数OTFS信号检测方案相比,基于深度学习(Deep Learning, DL)的OTFS检测器不需要耗费高额的导频能量,以...正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术凭借对多普勒频移的优良抗性,保证了高动态场景下的可靠性通信。与大多数OTFS信号检测方案相比,基于深度学习(Deep Learning, DL)的OTFS检测器不需要耗费高额的导频能量,以此获得精确的信道状态信息。基于多维输入的卷积神经网络(Convolutional Neural Networks, CNN)和一维输入的深度神经网络(Deep Neural Networks, DNN),搭建了OTFS信号检测模型,并结合OTFS的输入输出关系,以模型驱动,提出一种部分输入方法。与数据驱动DL相比,该方法沿时延轴截断输入数据,仅向网络输入与待检测信号相关性强的部分接收信号。该方法不仅减小了数据驱动CNN和DNN的训练参数量,降低了训练复杂度,而且检测性能也不弱于传统的线性最小均方误差(Linear Minimum Mean Square Error, LMMSE)算法。展开更多
基金supported by the Strategic Leading Project of the Chinese Academy of Sciences(No.XDA15014603).
文摘A reasonable parameter configuration helps improve the data transmission performance of the Licklider Transmission Protocol(LTP).Previous research has focused mainly on parameter optimization for LTP in simplified scenarios with one to two hops or multihop scenarios with a custody mechanism of the Bundle Protocol(BP).However,the research results are not applicable to communications in Complex Deep Space Networks(CDSNs)without the custody mechanism of BP that are more suitable for deep space communications with LTP.In this paper,we propose a model of file delivery time for LTP in CDSNs.Based on the model,we propose a Parameter Optimization Design Algorithm for LTP(LTP-PODA)of configuring reasonable parameters for LTP.The results show that the accuracy of the proposed model is at least 6.47%higher than that of the previously established models based on simple scenarios,and the proposed model is more suitable for CDSNs.Moreover,the LTP parameters are optimized by the LTP-PODA algorithm to obtain an optimization plan.Configuring the optimization plan for LTP improves the protocol transmission performance by at least 18.77%compared with configuring the other parameter configuration plans.
基金supported by National Natural Science Foundation of China (61471109, 61501104 and 91438110)Fundamental Research Funds for the Central Universities ( N140405005 , N150401002 and N150404002)Open Fund of IPOC (BUPT, IPOC2015B006)
文摘With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an important foundation and inevitable development trend of future deepspace communication. In this paper, we design a deep space node model which is capable of combining the space division multiplexing with frequency division multiplexing. Furthermore, we propose the directional flooding routing algorithm(DFRA) for DSON based on our node model. This scheme selectively forwards the data packets in the routing, so that the energy consumption can be reduced effectively because only a portion of nodes will participate the flooding routing. Simulation results show that, compared with traditional flooding routing algorithm(TFRA), the DFRA can avoid the non-directional and blind transmission. Therefore, the energy consumption in message routing will be reduced and the lifespan of DSON can also be prolonged effectively. Although the complexity of routing implementation is slightly increased compared with TFRA, the energy of nodes can be saved and the transmission rate is obviously improved in DFRA. Thus the overall performance of DSON can be significantly improved.
基金Supported by the National Natural Science Foundation of China (No. 60972061,60972062,and 61032004)the National High Technology Research and Development Program of China ("863" Program) (No. 2008AA12A204)
文摘Deep space communications has played an important role in deep space exploration. Compared with common satellite and terrestrial communications, deep space communications faces more challenging environment. The paper investigated the unique features of deep space communica-tions in detail, discussed the key technologies and its development trends for deep space communica-tions.