Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-d...Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.展开更多
Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of...Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.展开更多
Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present u...Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.展开更多
Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,hi...The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.展开更多
To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and ...To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program.展开更多
Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western sectio...Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.展开更多
In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot...In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.展开更多
Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pres...Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.展开更多
Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosi...Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.展开更多
The deeply buried Lower Cambrian Longwangmiao Formation and Upper Ediacaran Dengying Formation from the Sichuan Basin,China,have a total natural gas reserve up to 3×10^(12)m^(3).The complex diagenetic evolution a...The deeply buried Lower Cambrian Longwangmiao Formation and Upper Ediacaran Dengying Formation from the Sichuan Basin,China,have a total natural gas reserve up to 3×10^(12)m^(3).The complex diagenetic evolution and their impacts on the present-day reservoir quality have not been systematically elucidated,hampering the current exploration.Crucially,the integration and comparation diagenetic study on these two formations,which may be able to shed new lights on reservoir formation mechanism,are yet to be systemically evaluated.By compiling geochemistry data,including carbonate U-Pb ages and petrophysics data,coupled with new petrology,trace elements,and strontium isotope data,of various types of diagenetic carbonates,this study aims to decipher the potential links between diagenesis and reservoir development of both formations.Intriguingly,similar diagenetic sequence,which contains five distinctive dolomite phases,is established in both formations.The matrix dolomite(D1)and early dolomite cement(D2)were likely formed by reflux dolomitization,as inferred by their nearly syn-depositional U-Pb ages and elevatedδ^(18)O caused by seawater evaporation.The subsequent moderate burial dolomite cement(D3)was most plausibly the product of burial compaction as indicated by its lighterδ^(18)O and slightly younger U-Pb ages compared with D1 and D2.Whereas deep burial dolomite cements(D4 and D5)yield markedly depletedδ^(18)O,elevated ^(87)Sr/^(86)Sr,along with much younger U-Pb ages and higher precipitation temperatures,suggesting that they were likely linked to hydrothermal fluids.Despite the wide occurrence of meteoric and organic acids leaching and thermochemical sulfate reduction,they may have only played a subsidiary role on these reservoirs development.Instead,superior reservoir quality is tightly linked to tectonics as inferred by higher reservoir quality closely related to the well-developed fractures and faults filled with abundant hydrothermal minerals.Notably,good reservoirs in both formations are mainly attributed to high permeability caused by tectonics.Hence,this new contribution emphasizes the crucial role of tectonics on spatially explicit reservoir prediction of deep to ultra-deep(up to>8000 m)carbonates in the Sichuan Basin,as well as other sedimentary basin analogues in China.展开更多
The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality...The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality differences and origins of different types of source rocks in the Shahezi Formation,this study reconstructed the sedimentary and water environment,determined the controlling effects of fault activity,sedimentary facies,and paleo-sedimentary environment on the quality of various source rocks,by making full use of seismic,logging,core,organic geochemical and element geochemical analysis.The results show that two types of source rocks developed in the Shahezi Formation,namely,mudstones and coals.The mudstones have a relatively high abundance of organic matter,which consists of type-Ⅱ kerogen and partial type-Ⅲ kerogen,and are concentrated in Sha-I Member.The coals have a high abundance of organic matter,which consist of type-Ⅲ kerogen,and are mainly distributed in Sha-Ⅱ Member.During the deposition of Sha-I Member,intense fault activity formed arrow,deep-water lacustrine basins with high salinity and strong reducibility on the downthrow sides of faults.During the deposition of Sha-II Member,fault activity progressively weakened,and the areas of lacustrine basins enlarged to their maximum values and became wide,shallow-water basins with low salinity and low reducibility.The development of source rocks was controlled by fault activity,sedimentary facies,and paleo-sedimentary environment.Fault activity formed accommodation space on the downthrown sides of faults for mudstone accumulation,thus determining mudstone thickness.The sedimentary environment controlled the organic matter input and determined the distribution of mudstones and coals.The paleo-sedimentary environment,which consisted of paleo-salinity,as well as paleo-water depth and redox conditions,affected the accumulation and preservation of organic matter and is the main controlling factor for the quality difference of various source rocks in the Shahezi Formation.展开更多
The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to...The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.展开更多
The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by ex...The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by experiments. The results show that '.there are two errors between the calculated critical power of keyhole formation and that of experiments : one is that the calculated results is less than those of experiments, which is caused by not considering the energy loss by heat conduction in the model of keyhole formation. The other is that there is 0. 9 mm error between the axis of the calculated curve of critical power with location of laser focus and that of experimental curve, which is induced by the excursion of laser focus in laser deep penetration welding. At last, the two errors were revised according to the analyses of the errors.展开更多
Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics ...Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics of the general public. Although deep learning methods have successfully learned good visual features from images,correctly assessing the aesthetic quality of an image remains a challenge for deep learning. Methods To address this, we propose a novel multiview convolutional neural network to assess image aesthetics assessment through color composition and space formation(IAACS). Specifically, from different views of an image––including its key color components and their contributions, the image space formation, and the image itself––our network extracts the corresponding features through our proposed feature extraction module(FET) and the Image Net weight-based classification model. Result By fusing the extracted features, our network produces an accurate prediction score distribution for image aesthetics. The experimental results show that we have achieved superior performance.展开更多
Accurately obtaining the original information of an in-situ rock via coring is a significant guiding step for exploring and developing deep oil and gas resources.It is difficult for traditional coring technology and e...Accurately obtaining the original information of an in-situ rock via coring is a significant guiding step for exploring and developing deep oil and gas resources.It is difficult for traditional coring technology and equipment to preserve the original information in deep rocks.This study develops a technology for insitu substance-preserved(ISP),moisture-preserved(IMP),and light-preserved(ILP)coring.This technology stores the original information in real time by forming a solid sealing film on the in-situ sample during coring.This study designed the ISP-IMP-ILP-Coring process and tool.In addition,an ISP-IMP-ILPCoring process simulation system was developed.The effects of temperature,pressure,and film thickness on the quality of the in-situ film were investigated by performing in-situ film-forming simulation experiments.A solid sealing film with a thickness of 2-3 mm can be formed;it completely covers the core sample and has uniform thickness.The film maintains good ISP-IMP-ILP properties and can protect the core sample in the in-situ environment steadily.This study verifies the feasibility of“film formation during coring”technology and provides strong support for the engineering application of ISP-IMP-ILPCoring technology.展开更多
The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controllin...The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.展开更多
This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs,focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan ...This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs,focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin.The study involves petrology,microscale X-ray diffraction,trace element analysis,and C-O-Sr-Mg isotope experiments to provide a detailed analysis.The research findings indicate that the Dengying and Longwangmiao formations comprise six types of matrix dolostone and four types of cement.The Dengying Formation,which developed under a sedimentary background of a restricted platform,contains special microbial and microcrystalline dolostones.The dolomite grains are small(<30μm)and have a low order degree(Min=0.55),with large unit cell parameters and an extremely high Na content(Max=788 ppm).The^(87)Sr/^(86)Sr value of the dolostone is consistent with contemporaneous seawater,while the δ^(13)C andδ^(18)O values are lower than those of the contemporaneous seawater.The δ^(26)Mg value is small(Min=-2.31‰).Powder crystal,fine-crystalline,and calcite dolostones with coarser and more ordered crystals exhibit similar δ^(13)C and^(87)Sr/^(86)Sr values to microbial and microcrystalline dolostone.During the sedimentary period of the Dengying Formation,ancient marine conditions were favorable for microbial survival.Microorganisms induced the direct precipitation of primary dolomite in seawater,forming microbial and microcrystalline dolostones during the seawater diagenesis period.During the subsequent diagenesis period,dolostones underwent the effects of dissolution-recrystallization,structures,and hydrothermal fluids.This resulted in the formation of dolostone with coarser crystals,a higher degree of order,and various types of cement.The Longwangmiao Formation was developed in an interplatform beach characterized by special particle dolostone.The particle dolostone has a large grain size(>30μm),high order degree(Min=0.7),small unit cell parameters,high Na content(Max=432 ppm),and low Fe and Mn content.The δ^(26)Mg and δ^(13)C values are consistent with the contemporaneous seawater,while the δ^(18)O and^(87)Sr/^(86)Sr values are higher than those of the contemporaneous seawater.There is mutual coupling between multiple-period varying δ^(26)Mg values and sedimentary cycles.The dolostone in the Longwangmiao Formation resulted from the metasomatism of limestone by evaporated seawater.The thickness and scale of the dolostone in the Longwangmiao Formation are controlled by the periodic changes in sea level.The period of dolostone development from the Sinian to the Cambrian coincides with the transition from Rodinia’s breakup to Gondwana’s convergence.These events have resulted in vastly different marine properties,microbial activities,and sedimentary climate backgrounds between the Sinian and the Cambrian.These differences may be the fundamental factors leading to the distinct origins of dolostone formed in the two periods.The distribution of sedimentary facies and deep tectonic activities in the Sichuan Basin from the Sinian to the Cambrian is influenced by the breakup and convergence of the supercontinent.This process plays a key role in determining the distribution,pore formation,preservation,and adjustment mechanisms of ultra-deep dolostone reservoirs.To effectively analyze the genesis and reservoir mechanisms of ultra-deep dolostone in other regions or layers,especially during the specific period of supercontinent breakup and convergence,it is crucial to consider the comprehensive characteristics of seawater properties,microbial activities,sedimentary environment,and fault systems driven by tectonic activities.This can help predict the distribution of high-quality and large-scale ultra-deep dolostone reservoirs.展开更多
In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth, experimental research on reactions between carbonates and water or water bearing minerals was carried out at th...In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth, experimental research on reactions between carbonates and water or water bearing minerals was carried out at the pressure of about 1 GPa and the temperature range of 800-1500℃. The reactions took place in an open and nonequilibrium state. Chromatographic analyses of the gas products indicate that in the experiments there were generated CH 4 dominated hydrocarbons, along with some CO 2 and CO. Accordingly, we think there is no essential distinction between free state water and hydroxy in the minerals in the process of hydrocarbon formation. This study indicates that reactions between carbonates and water or water bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth’s depth.展开更多
Deep shale layer in the Lower Silurian Longmaxi Formation,southern Sichuan Basin is the major replacement target of shale gas exploration in China.However,the prediction of"sweet-spots"in deep shale gas rese...Deep shale layer in the Lower Silurian Longmaxi Formation,southern Sichuan Basin is the major replacement target of shale gas exploration in China.However,the prediction of"sweet-spots"in deep shale gas reservoirs lacks physical basis due to the short of systematic experimental research on the physical properties of the deep shale.Based on petrological,acoustic and hardness measurements,variation law and control factors of dynamic and static elastic properties of the deep shale samples are investigated.The study results show that the deep shale samples are similar to the middle-shallow shale in terms of mineral composition and pore type.Geochemical characteristics of organic-rich shale samples(TOC>2%)indicate that these shale samples have a framework of microcrystalline quartz grains;the intergranular pores in these shale samples are between rigid quartz grains and have mechanical property of hard pore.The lean-organic shale samples(TOC<2%),with quartz primarily coming from terrigenous debris,feature plastic clay mineral particles as the support frame in rock texture.Intergranular pores in these samples are between clay particles,and show features of soft pores in mechanical property.The difference in microtexture of the deep shale samples results in an asymmetrical inverted V-type change in velocity with quartz content,and the organic-rich shale samples have a smaller variation rate in velocity-porosity and velocity-organic matter content.Also due to the difference in microtexture,the organic-rich shale and organic-lean shale can be clearly discriminated in the cross plots of P-wave impedance versus Poisson’s ratio as well as elasticity modulus versus Poisson’s ratio.The shale samples with quartz mainly coming from biogenic silica show higher hardness and brittleness,while the shale samples with quartz from terrigenous debris have hardness and brittleness less affected by quartz content.The study results can provide a basis for well-logging interpretation and"sweet spot"prediction of Longmaxi Formation shale gas reservoirs.展开更多
基金Supported by the National Natural Science Foundation of ChinaCorporate Innovative Development Joint Fund(U19B6003)。
文摘Based on the new data of drilling, seismic, logging, test and experiments, the key scientific problems in reservoir formation, hydrocarbon accumulation and efficient oil and gas development methods of deep and ultra-deep marine carbonate strata in the central and western superimposed basin in China have been continuously studied.(1) The fault-controlled carbonate reservoir and the ancient dolomite reservoir are two important types of reservoirs in the deep and ultra-deep marine carbonates. According to the formation origin, the large-scale fault-controlled reservoir can be further divided into three types:fracture-cavity reservoir formed by tectonic rupture, fault and fluid-controlled reservoir, and shoal and mound reservoir modified by fault and fluid. The Sinian microbial dolomites are developed in the aragonite-dolomite sea. The predominant mound-shoal facies, early dolomitization and dissolution, acidic fluid environment, anhydrite capping and overpressure are the key factors for the formation and preservation of high-quality dolomite reservoirs.(2) The organic-rich shale of the marine carbonate strata in the superimposed basins of central and western China are mainly developed in the sedimentary environments of deep-water shelf of passive continental margin and carbonate ramp. The tectonic-thermal system is the important factor controlling the hydrocarbon phase in deep and ultra-deep reservoirs, and the reformed dynamic field controls oil and gas accumulation and distribution in deep and ultra-deep marine carbonates.(3) During the development of high-sulfur gas fields such as Puguang, sulfur precipitation blocks the wellbore. The application of sulfur solvent combined with coiled tubing has a significant effect on removing sulfur blockage. The integrated technology of dual-medium modeling and numerical simulation based on sedimentary simulation can accurately characterize the spatial distribution and changes of the water invasion front.Afterward, water control strategies for the entire life cycle of gas wells are proposed, including flow rate management, water drainage and plugging.(4) In the development of ultra-deep fault-controlled fractured-cavity reservoirs, well production declines rapidly due to the permeability reduction, which is a consequence of reservoir stress-sensitivity. The rapid phase change in condensate gas reservoir and pressure decline significantly affect the recovery of condensate oil. Innovative development methods such as gravity drive through water and natural gas injection, and natural gas drive through top injection and bottom production for ultra-deep fault-controlled condensate gas reservoirs are proposed. By adopting the hierarchical geological modeling and the fluid-solid-thermal coupled numerical simulation, the accuracy of producing performance prediction in oil and gas reservoirs has been effectively improved.
基金Supported by the CNPC Science and Technology Project(2023ZZ022023ZZ14-01).
文摘Based on new data from cores,drilling and logging,combined with extensive rock and mineral testing analysis,a systematic analysis is conducted on the characteristics,diagenesis types,genesis and controlling factors of deep to ultra-deep abnormally high porosity clastic rock reservoirs in the Oligocene Linhe Formation in the Hetao Basin.The reservoir space of the deep to ultra-deep clastic rock reservoirs in the Linhe Formation is mainly primary pores,and the coupling of three favorable diagenetic elements,namely the rock fabric with strong compaction resistance,weak thermal compaction diagenetic dynamic field,and diagenetic environment with weak fluid compaction-weak cementation,is conducive to the preservation of primary pores.The Linhe Formation clastic rocks have a superior preexisting material composition,with an average total content of 90%for quartz,feldspar,and rigid rock fragments,and strong resistance to compaction.The geothermal gradient in Linhe Depression in the range of(2.0–2.6)°C/100 m is low,and together with the burial history of long-term shallow burial and late rapid deep burial,it forms a weak thermal compaction diagenetic dynamic field environment.The diagenetic environment of the saline lake basin is characterized by weak fluid compaction.At the same time,the paleosalinity has zoning characteristics,and weak cementation in low salinity areas is conducive to the preservation of primary pores.The hydrodynamic conditions of sedimentation,salinity differentiation of ancient water in saline lake basins,and sand body thickness jointly control the distribution of high-quality reservoirs in the Linhe Formation.
基金Dao-Bing Wang was supported by the Beijing Natural Science Foundation Project(No.3222030)the National Natural Science Foundation of China(No.52274002)+1 种基金the PetroChina Science and Technology Innovation Foundation Project(No.2021DQ02-0201)Fu-Jian Zhou was supported by the National Natural Science Foundation of China(No.52174045).
文摘Deep and ultra-deep reservoirs have gradually become the primary focus of hydrocarbon exploration as a result of a series of significant discoveries in deep hydrocarbon exploration worldwide.These reservoirs present unique challenges due to their deep burial depth(4500-8882 m),low matrix permeability,complex crustal stress conditions,high temperature and pressure(HTHP,150-200℃,105-155 MPa),coupled with high salinity of formation water.Consequently,the costs associated with their exploitation and development are exceptionally high.In deep and ultra-deep reservoirs,hydraulic fracturing is commonly used to achieve high and stable production.During hydraulic fracturing,a substantial volume of fluid is injected into the reservoir.However,statistical analysis reveals that the flowback rate is typically less than 30%,leaving the majority of the fluid trapped within the reservoir.Therefore,hydraulic fracturing in deep reservoirs not only enhances the reservoir permeability by creating artificial fractures but also damages reservoirs due to the fracturing fluids involved.The challenging“three-high”environment of a deep reservoir,characterized by high temperature,high pressure,and high salinity,exacerbates conventional forms of damage,including water sensitivity,retention of fracturing fluids,rock creep,and proppant breakage.In addition,specific damage mechanisms come into play,such as fracturing fluid decomposition at elevated temperatures and proppant diagenetic reactions at HTHP conditions.Presently,the foremost concern in deep oil and gas development lies in effectively assessing the damage inflicted on these reservoirs by hydraulic fracturing,comprehending the underlying mechanisms,and selecting appropriate solutions.It's noteworthy that the majority of existing studies on reservoir damage primarily focus on conventional reservoirs,with limited attention given to deep reservoirs and a lack of systematic summaries.In light of this,our approach entails initially summarizing the current knowledge pertaining to the types of fracturing fluids employed in deep and ultra-deep reservoirs.Subsequently,we delve into a systematic examination of the damage processes and mechanisms caused by fracturing fluids within the context of hydraulic fracturing in deep reservoirs,taking into account the unique reservoir characteristics of high temperature,high pressure,and high in-situ stress.In addition,we provide an overview of research progress related to high-temperature deep reservoir fracturing fluid and the damage of aqueous fracturing fluids to rock matrix,both artificial and natural fractures,and sand-packed fractures.We conclude by offering a summary of current research advancements and future directions,which hold significant potential for facilitating the efficient development of deep oil and gas reservoirs while effectively mitigating reservoir damage.
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.
基金Supported by the Projects of National Natural Science Foundation of China(52288101,52174014,52374023)。
文摘The research progress of deep and ultra-deep drilling fluid technology systematically reviewed,the key problems existing are analyzed,and the future development direction is proposed.In view of the high temperature,high pressure and high stress,fracture development,wellbore instability,drilling fluid lost circulation and other problems faced in the process of deep and ultra-deep complex oil and gas drilling,scholars have developed deep and ultra-deep high-temperature and high-salt resistant water-based drilling fluid technology,high-temperature resistant oil-based/synthetic drilling fluid technology,drilling fluid technology for reservoir protection and drilling fluid lost circulation control technology.However,there are still some key problems such as insufficient resistance to high temperature,high pressure and high stress,wellbore instability and serious lost circulation.Therefore,the development direction of deep and ultra-deep drilling fluid technology in the future is proposed:(1)The technology of high-temperature and high-salt resistant water-based drilling fluid should focus on improving high temperature stability,improving rheological properties,strengthening filtration control and improving compatibility with formation.(2)The technology of oil-based/synthetic drilling fluid resistant to high temperature should further study in the aspects of easily degradable environmental protection additives with low toxicity such as high temperature stabilizer,rheological regulator and related supporting technologies.(3)The drilling fluid technology for reservoir protection should be devoted to the development of new high-performance additives and materials,and further improve the real-time monitoring technology by introducing advanced sensor networks and artificial intelligence algorithms.(4)The lost circulation control of drilling fluid should pay more attention to the integration and application of intelligent technology,the research and application of high-performance plugging materials,the exploration of diversified plugging techniques and methods,and the improvement of environmental protection and production safety awareness.
基金Supported by the National Natural Science Foundation of China(41872124,42130803)Sinopec Key Science and Technology Project(P20046).
文摘To investigate the porosity, permeability and rock mechanics of deep shale under temperature-pressure coupling, we selected the core samples of deep shale from the Lower Silurian Longmaxi Formation in the Weirong and Yongchuan areas of the Sichuan Basin for porosity and permeability experiments and a triaxial compression and sound wave integration experiment at the maximum temperature and pressure of 120 ℃ and 70 MPa. The results show that the microscopic porosity and permeability change and the macroscopic rock deformation are mutually constrained, both showing the trend of steep and then gentle variation. At the maximum temperature and pressure, the porosity reduces by 34%–71%, and the permeability decreases by 85%–97%. With the rising temperature and pressure, deep shale undergoes plastic deformation in which organic pores and clay mineral pores are compressed and microfractures are closed, and elastic deformation in which brittle mineral pores and rock skeleton particles are compacted. Compared with previous experiments under high confining pressure and normal temperature,the experiment under high temperature and high pressure coupling reveals the effect of high temperature on stress sensitivity of porosity and permeability. High temperature can increase the plasticity of the rock, intensify the compression of pores due to high confining pressure, and induce thermal stress between the rock skeleton particles, allowing the reopening of shale bedding or the creation of new fractures along weak planes such as bedding, which inhibits the decrease of permeability with the increase of temperature and confining pressure. Compared with the triaxial mechanical experiment at normal temperature, the triaxial compression experiment at high temperature and high pressure demonstrates that the compressive strength and peak strain of deep shale increase significantly due to the coupling of temperature and pressure. The compressive strength is up to 435 MPa and the peak strain exceeds 2%, indicating that high temperature is not conducive to fracture initiation and expansion by increasing rock plasticity. Lithofacies and mineral composition have great impacts on the porosity, permeability and rock mechanics of deep shale. Shales with different lithologies are different in the difficulty and extent of brittle failure. The stress-strain characteristics of rocks under actual geological conditions are key support to the optimization of reservoir stimulation program.
基金Supported by the National Natural Science Foundation of China (41902118)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01B141)+1 种基金Natural Science Foundation of Heilongjiang Province (LH2021D003)Heilongjiang Postdoctoral Fund (No.LBH-Z20045)。
文摘Using the data of drilling, logging, core, experiments and production, the heterogeneity and differential hydrocarbon accumulation model of deep reservoirs in Cretaceous Qingshuihe Formation(K1q) in the western section of the foreland thrust belt in southern Junggar Basin are investigated. The target reservoirs are characterized by superimposition of conglomerates, sandy conglomerates and sandstones, with high content of plastic clasts. The reservoir space is mainly composed of intergranular pores. The reservoirs are overall tight, and the sandy conglomerate has the best physical properties. The coupling of short deep burial period with low paleotemperature gradient and formation overpressure led to the relatively weak diagenetic strength of the reservoirs. Specifically, the sandy conglomerates show relatively low carbonate cementation, low compaction rate and high dissolution porosity. The special stress-strain mechanism of the anticline makes the reservoirs at the top of the anticline turning point more reformed by fractures than those at the limbs, and the formation overpressure makes the fractures in open state. Moreover, the sandy conglomerates have the highest oil saturation. Typical anticline reservoirs are developed in deep part of the thrust belt, but characterized by "big trap with small reservoir". Significantly, the sandy conglomerates at the top of anticline turning point have better quality, lower in-situ stress and higher structural position than those at the limbs,with the internal hydrocarbons most enriched, making them high-yield oil/gas layers. The exponential decline of fractures makes hydrocarbon accumulation difficult in the reservoirs at the limbs. Nonetheless, plane hydrocarbon distribution is more extensive at the gentle limb than the steep limb.
基金Supported by the Sinopec Science and Technology Project(P21040-1).
文摘In the second member of the Upper Triassic Xujiahe Formation(T_(3)x_(2))in the Xinchang area,western Sichuan Basin,only a low percent of reserves has been recovered,and the geological model of gas reservoir sweet spot remains unclear.Based on a large number of core,field outcrop,test and logging-seismic data,the T_(3)x_(2) gas reservoir in the Xinchang area is examined.The concept of fault-fold-fracture body(FFFB)is proposed,and its types are recognized.The main factors controlling fracture development are identified,and the geological models of FFFB are established.FFFB refers to faults,folds and associated fractures reservoirs.According to the characteristics and genesis,FFFBs can be divided into three types:fault-fracture body,fold-fracture body,and fault-fold body.In the hanging wall of the fault,the closer to the fault,the more developed the effective fractures;the greater the fold amplitude and the closer to the fold hinge plane,the more developed the effective fractures.Two types of geological models of FFFB are established:fault-fold fracture,and matrix storage and permeability.The former can be divided into two subtypes:network fracture,and single structural fracture,and the later can be divided into three subtypes:bedding fracture,low permeability pore,and extremely low permeability pore.The process for evaluating favorable FFFB zones was formed to define favorable development targets and support the well deployment for purpose of high production.The study results provide a reference for the exploration and development of deep tight sandstone oil and gas reservoirs in China.
基金Supported by PetroChina Science and Technology Project(2021DJ0202).
文摘Considering the action mechanisms of overpressure on physical changes in skeleton particles of deep reservoir rocks and the differences in physical changes of skeleton particles under overpressure and hydrostatic pressure, the sandstone of the Jurassic Toutunhe Formation in the southern margin of Junggar Basin was taken as an example for physical modeling experiment to analyze the action mechanisms of overpressure on the physical properties of deep reservoirs. (1) In the simulated ultra-deep layer with a burial depth of 6000-8000 m, the mechanical compaction under overpressure reduces the remaining primary pores by about a half that under hydrostatic pressure. Overpressure can effectively suppress the mechanical compaction to allow the preservation of intergranular primary pores. (2) The linear contact length ratio under overpressure is always smaller than the linear contact length ratio under hydrostatic pressure at the same depth. In deep reservoirs, the difference between the mechanical compaction degree under overpressure and hydrostatic pressure shows a decreasing trend, the effect of abnormally high pressure to resist the increase of effective stress is weakened, and the degree of mechanical compaction is gradually close to that under hydrostatic pressure. (3) The microfractures in skeleton particles of deep reservoirs under overpressure are thin and long, while the microfractures in skeleton particles of deep reservoirs under hydrostatic pressure are short and wide. This difference is attributed to the probable presence of tension fractures in the rocks containing abnormally high pressure fluid. (4) The microfractures in skeleton particles under overpressure were mainly formed later than that under hydrostatic pressure, and the development degree and length of microfractures both extend deeper. (5) The development stages of microfractures under overpressure are mainly controlled by the development stages of abnormally high pressure and the magnitude of effective stress acting on the skeleton particles. Moreover, the development stages of microfractures in skeleton particles are more than those under hydrostatic pressure in deep reservoir. The multi-stage abnormally high pressure plays an important role in improving the physical properties of deep reservoirs.
基金Supported by the National Science and Technology Major Project of China(2017ZX05035).
文摘Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.
基金supported by grants from the National Natural Science Foundation of China(41972149,41890843).
文摘The deeply buried Lower Cambrian Longwangmiao Formation and Upper Ediacaran Dengying Formation from the Sichuan Basin,China,have a total natural gas reserve up to 3×10^(12)m^(3).The complex diagenetic evolution and their impacts on the present-day reservoir quality have not been systematically elucidated,hampering the current exploration.Crucially,the integration and comparation diagenetic study on these two formations,which may be able to shed new lights on reservoir formation mechanism,are yet to be systemically evaluated.By compiling geochemistry data,including carbonate U-Pb ages and petrophysics data,coupled with new petrology,trace elements,and strontium isotope data,of various types of diagenetic carbonates,this study aims to decipher the potential links between diagenesis and reservoir development of both formations.Intriguingly,similar diagenetic sequence,which contains five distinctive dolomite phases,is established in both formations.The matrix dolomite(D1)and early dolomite cement(D2)were likely formed by reflux dolomitization,as inferred by their nearly syn-depositional U-Pb ages and elevatedδ^(18)O caused by seawater evaporation.The subsequent moderate burial dolomite cement(D3)was most plausibly the product of burial compaction as indicated by its lighterδ^(18)O and slightly younger U-Pb ages compared with D1 and D2.Whereas deep burial dolomite cements(D4 and D5)yield markedly depletedδ^(18)O,elevated ^(87)Sr/^(86)Sr,along with much younger U-Pb ages and higher precipitation temperatures,suggesting that they were likely linked to hydrothermal fluids.Despite the wide occurrence of meteoric and organic acids leaching and thermochemical sulfate reduction,they may have only played a subsidiary role on these reservoirs development.Instead,superior reservoir quality is tightly linked to tectonics as inferred by higher reservoir quality closely related to the well-developed fractures and faults filled with abundant hydrothermal minerals.Notably,good reservoirs in both formations are mainly attributed to high permeability caused by tectonics.Hence,this new contribution emphasizes the crucial role of tectonics on spatially explicit reservoir prediction of deep to ultra-deep(up to>8000 m)carbonates in the Sichuan Basin,as well as other sedimentary basin analogues in China.
基金The authors acknowledge financial support from National Science and Technology Major Project of China(No.2016ZX05001-002)Important National Science and Technology Project of CNPC(No.2021DJ0202).
文摘The types and quality of source rocks in the Shahezi Formation are the key factors affecting the distributions of various deep gas reservoirs in the Xujiaweizi fault depression in Songliao Basin.To clarify the quality differences and origins of different types of source rocks in the Shahezi Formation,this study reconstructed the sedimentary and water environment,determined the controlling effects of fault activity,sedimentary facies,and paleo-sedimentary environment on the quality of various source rocks,by making full use of seismic,logging,core,organic geochemical and element geochemical analysis.The results show that two types of source rocks developed in the Shahezi Formation,namely,mudstones and coals.The mudstones have a relatively high abundance of organic matter,which consists of type-Ⅱ kerogen and partial type-Ⅲ kerogen,and are concentrated in Sha-I Member.The coals have a high abundance of organic matter,which consist of type-Ⅲ kerogen,and are mainly distributed in Sha-Ⅱ Member.During the deposition of Sha-I Member,intense fault activity formed arrow,deep-water lacustrine basins with high salinity and strong reducibility on the downthrow sides of faults.During the deposition of Sha-II Member,fault activity progressively weakened,and the areas of lacustrine basins enlarged to their maximum values and became wide,shallow-water basins with low salinity and low reducibility.The development of source rocks was controlled by fault activity,sedimentary facies,and paleo-sedimentary environment.Fault activity formed accommodation space on the downthrown sides of faults for mudstone accumulation,thus determining mudstone thickness.The sedimentary environment controlled the organic matter input and determined the distribution of mudstones and coals.The paleo-sedimentary environment,which consisted of paleo-salinity,as well as paleo-water depth and redox conditions,affected the accumulation and preservation of organic matter and is the main controlling factor for the quality difference of various source rocks in the Shahezi Formation.
基金The Western Light Talent Culture Project of the Chinese Academy of Sciences under contract No.Y404RC1the National Petroleum Major Projects of China under contract No.2016ZX05026-007-005+2 种基金the Key Laboratory of Petroleum Resources Research Fund of the Chinese Academy of Sciences under contract No.KFJJ2013-04the Science and Technology Program of Gansu Province under contract No.1501RJYA006the Key Laboratory Project of Gansu Province of China under contract No.1309RTSA041
文摘The natural gas generation process is simulated by heating source rocks of the Yacheng Formation, including the onshore-offshore mudstone and coal with kerogens of Type II2-III in the Qiongdongnan Basin. The aim is to quantify the natural gas generation from the Yacheng Formation and to evaluate the geological prediction and kinetic parameters using an optimization procedure based on the basin modeling of the shallow-water area. For this, the hydrocarbons produced have been grouped into four classes(C1, C2, C3 and C4-6). The results show that the onset temperature of methane generation is predicted to occur at 110℃ during the thermal history of sediments since 5.3 Ma by using data extrapolation. The hydrocarbon potential for ethane, propane and heavy gaseous hydrocarbons(C4-6) is found to be almost exhausted at geological temperature of 200℃ when the transformation ratio(TR) is over 0.8, but for which methane is determined to be about 0.5 in the shallow-water area. In contrast, the end temperature of the methane generation in the deep-water area was over 300℃ with a TR over 0.8. It plays an important role in the natural gas exploration of the deep-water basin and other basins in the broad ocean areas of China. Therefore, the natural gas exploration for the deep-water area in the Qiongdongnan Basin shall first aim at the structural traps in the Ledong, Lingshui and Beijiao sags, and in the forward direction of the structure around the sags, and then gradually develop toward the non-structural trap in the deep-water area basin of the broad ocean areas of China.
文摘The energy model was founded to calculate the critical power of keyhole formation by using the limit principle in CW ( continuous wave ) Nd: YAG laser deep penetration welding process. The model was validated by experiments. The results show that '.there are two errors between the calculated critical power of keyhole formation and that of experiments : one is that the calculated results is less than those of experiments, which is caused by not considering the energy loss by heat conduction in the model of keyhole formation. The other is that there is 0. 9 mm error between the axis of the calculated curve of critical power with location of laser focus and that of experimental curve, which is induced by the excursion of laser focus in laser deep penetration welding. At last, the two errors were revised according to the analyses of the errors.
基金Supported by the National Key R&D Program of China (No:2018YFB1403202)the National Natural Science Foundation of China(62172366)。
文摘Background Determining how an image is visually appealing is a complicated and subjective task. This motivates the use of a machine-learning model to evaluate image aesthetics automatically by matching the aesthetics of the general public. Although deep learning methods have successfully learned good visual features from images,correctly assessing the aesthetic quality of an image remains a challenge for deep learning. Methods To address this, we propose a novel multiview convolutional neural network to assess image aesthetics assessment through color composition and space formation(IAACS). Specifically, from different views of an image––including its key color components and their contributions, the image space formation, and the image itself––our network extracts the corresponding features through our proposed feature extraction module(FET) and the Image Net weight-based classification model. Result By fusing the extracted features, our network produces an accurate prediction score distribution for image aesthetics. The experimental results show that we have achieved superior performance.
基金the National Natural Science Foundation of China(grant numbers 51827901,52004166)funded by the Program for Shenzhen Basic Research Program(General Program)(No.JCYJ20190808153416970)Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)
文摘Accurately obtaining the original information of an in-situ rock via coring is a significant guiding step for exploring and developing deep oil and gas resources.It is difficult for traditional coring technology and equipment to preserve the original information in deep rocks.This study develops a technology for insitu substance-preserved(ISP),moisture-preserved(IMP),and light-preserved(ILP)coring.This technology stores the original information in real time by forming a solid sealing film on the in-situ sample during coring.This study designed the ISP-IMP-ILP-Coring process and tool.In addition,an ISP-IMP-ILPCoring process simulation system was developed.The effects of temperature,pressure,and film thickness on the quality of the in-situ film were investigated by performing in-situ film-forming simulation experiments.A solid sealing film with a thickness of 2-3 mm can be formed;it completely covers the core sample and has uniform thickness.The film maintains good ISP-IMP-ILP properties and can protect the core sample in the in-situ environment steadily.This study verifies the feasibility of“film formation during coring”technology and provides strong support for the engineering application of ISP-IMP-ILPCoring technology.
基金Supported by the China National Science and Technology Major Project (2016ZX05006-006)
文摘The reservoir properties, diagenetic features and evolution of the Paleogene Shahejie Formation(Es) in the Nanpu sag, Bohai Bay Basin were analyzed based on mineralogical and petrological data, and the main controlling factors and formation mechanisms of medium to deep high-quality reservoir were revealed by multiple regression analysis. The results show that the sedimentary microfacies, rigid grains content, and dissolution process are the key factors controlling the formation of high-quality clastic reservoir in middle to deep depth in the Nanpu sag. The formation mechanisms of middle to deep sandstones of the Es in different structural belts differ widely in formation mechanism. The Es1(uppermost member of Es) sandstone reservoirs in the Nanpu No.3 structural belt is low porosity, moderate to high permeability reservoir in the mesodiagenesis A2 stage on the whole, and the formation of high-quality reservoirs is mainly attributed to strong compaction resistance ability primarily, and dissolution process secondarily. The Es3(third member of Es) sandstones in Gaoshangpu structural belt is classified as tight sandstones in the mesodiagenesis A1 stage, in which the development of favorable reservoirs is primarily controlled by dissolution. This study provides references for reservoir evaluation of deep clastic reservoirs and exploration deployment in the Bohai Bay rift basin. As there are high-quality reservoirs, it is believed that the deep clastic reservoirs in the eastern of China, such as Bohai Bay Basin still have significant exploration potential.
基金supported by the Scientific Research and Technological Development Project of China National Petroleum Corporation(Grant No.2021DJ05)。
文摘This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs,focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin.The study involves petrology,microscale X-ray diffraction,trace element analysis,and C-O-Sr-Mg isotope experiments to provide a detailed analysis.The research findings indicate that the Dengying and Longwangmiao formations comprise six types of matrix dolostone and four types of cement.The Dengying Formation,which developed under a sedimentary background of a restricted platform,contains special microbial and microcrystalline dolostones.The dolomite grains are small(<30μm)and have a low order degree(Min=0.55),with large unit cell parameters and an extremely high Na content(Max=788 ppm).The^(87)Sr/^(86)Sr value of the dolostone is consistent with contemporaneous seawater,while the δ^(13)C andδ^(18)O values are lower than those of the contemporaneous seawater.The δ^(26)Mg value is small(Min=-2.31‰).Powder crystal,fine-crystalline,and calcite dolostones with coarser and more ordered crystals exhibit similar δ^(13)C and^(87)Sr/^(86)Sr values to microbial and microcrystalline dolostone.During the sedimentary period of the Dengying Formation,ancient marine conditions were favorable for microbial survival.Microorganisms induced the direct precipitation of primary dolomite in seawater,forming microbial and microcrystalline dolostones during the seawater diagenesis period.During the subsequent diagenesis period,dolostones underwent the effects of dissolution-recrystallization,structures,and hydrothermal fluids.This resulted in the formation of dolostone with coarser crystals,a higher degree of order,and various types of cement.The Longwangmiao Formation was developed in an interplatform beach characterized by special particle dolostone.The particle dolostone has a large grain size(>30μm),high order degree(Min=0.7),small unit cell parameters,high Na content(Max=432 ppm),and low Fe and Mn content.The δ^(26)Mg and δ^(13)C values are consistent with the contemporaneous seawater,while the δ^(18)O and^(87)Sr/^(86)Sr values are higher than those of the contemporaneous seawater.There is mutual coupling between multiple-period varying δ^(26)Mg values and sedimentary cycles.The dolostone in the Longwangmiao Formation resulted from the metasomatism of limestone by evaporated seawater.The thickness and scale of the dolostone in the Longwangmiao Formation are controlled by the periodic changes in sea level.The period of dolostone development from the Sinian to the Cambrian coincides with the transition from Rodinia’s breakup to Gondwana’s convergence.These events have resulted in vastly different marine properties,microbial activities,and sedimentary climate backgrounds between the Sinian and the Cambrian.These differences may be the fundamental factors leading to the distinct origins of dolostone formed in the two periods.The distribution of sedimentary facies and deep tectonic activities in the Sichuan Basin from the Sinian to the Cambrian is influenced by the breakup and convergence of the supercontinent.This process plays a key role in determining the distribution,pore formation,preservation,and adjustment mechanisms of ultra-deep dolostone reservoirs.To effectively analyze the genesis and reservoir mechanisms of ultra-deep dolostone in other regions or layers,especially during the specific period of supercontinent breakup and convergence,it is crucial to consider the comprehensive characteristics of seawater properties,microbial activities,sedimentary environment,and fault systems driven by tectonic activities.This can help predict the distribution of high-quality and large-scale ultra-deep dolostone reservoirs.
文摘In order to investigate the mechanism of formation of abiogenetic hydrocarbons at the depth of the Earth, experimental research on reactions between carbonates and water or water bearing minerals was carried out at the pressure of about 1 GPa and the temperature range of 800-1500℃. The reactions took place in an open and nonequilibrium state. Chromatographic analyses of the gas products indicate that in the experiments there were generated CH 4 dominated hydrocarbons, along with some CO 2 and CO. Accordingly, we think there is no essential distinction between free state water and hydroxy in the minerals in the process of hydrocarbon formation. This study indicates that reactions between carbonates and water or water bearing minerals should be an important factor leading to the formation of abiogenetic hydrocarbons at the Earth’s depth.
基金Supported by the National Natural Science Foundation of China(41774136)China National Science and Technology Major Project(2017ZX05035004)
文摘Deep shale layer in the Lower Silurian Longmaxi Formation,southern Sichuan Basin is the major replacement target of shale gas exploration in China.However,the prediction of"sweet-spots"in deep shale gas reservoirs lacks physical basis due to the short of systematic experimental research on the physical properties of the deep shale.Based on petrological,acoustic and hardness measurements,variation law and control factors of dynamic and static elastic properties of the deep shale samples are investigated.The study results show that the deep shale samples are similar to the middle-shallow shale in terms of mineral composition and pore type.Geochemical characteristics of organic-rich shale samples(TOC>2%)indicate that these shale samples have a framework of microcrystalline quartz grains;the intergranular pores in these shale samples are between rigid quartz grains and have mechanical property of hard pore.The lean-organic shale samples(TOC<2%),with quartz primarily coming from terrigenous debris,feature plastic clay mineral particles as the support frame in rock texture.Intergranular pores in these samples are between clay particles,and show features of soft pores in mechanical property.The difference in microtexture of the deep shale samples results in an asymmetrical inverted V-type change in velocity with quartz content,and the organic-rich shale samples have a smaller variation rate in velocity-porosity and velocity-organic matter content.Also due to the difference in microtexture,the organic-rich shale and organic-lean shale can be clearly discriminated in the cross plots of P-wave impedance versus Poisson’s ratio as well as elasticity modulus versus Poisson’s ratio.The shale samples with quartz mainly coming from biogenic silica show higher hardness and brittleness,while the shale samples with quartz from terrigenous debris have hardness and brittleness less affected by quartz content.The study results can provide a basis for well-logging interpretation and"sweet spot"prediction of Longmaxi Formation shale gas reservoirs.