Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remain...Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods.展开更多
Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical...Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.展开更多
In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomac...In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance.展开更多
White blood cells(WBC)are immune system cells,which is why they are also known as immune cells.They protect the human body from a variety of dangerous diseases and outside invaders.The majority of WBCs come from red b...White blood cells(WBC)are immune system cells,which is why they are also known as immune cells.They protect the human body from a variety of dangerous diseases and outside invaders.The majority of WBCs come from red bone marrow,although some come from other important organs in the body.Because manual diagnosis of blood disorders is difficult,it is necessary to design a computerized technique.Researchers have introduced various automated strategies in recent years,but they still face several obstacles,such as imbalanced datasets,incorrect feature selection,and incorrect deep model selection.We proposed an automated deep learning approach for classifying white blood disorders in this paper.The data augmentation approach is initially used to increase the size of a dataset.Then,a Darknet-53 pre-trained deep learning model is used and finetuned according to the nature of the chosen dataset.On the fine-tuned model,transfer learning is used,and features engineering is done on the global average pooling layer.The retrieved characteristics are subsequently improved with a specified number of iterations using a hybrid reformed binary grey wolf optimization technique.Following that,machine learning classifiers are used to classify the selected best features for final classification.The experiment was carried out using a dataset of increased blood diseases imaging and resulted in an improved accuracy of over 99%.展开更多
Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one ...Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one of the most complex machine learning tasks in recent times.Numerous models rely on various parameters,such as the detection rate,position,and direction of human body components in RGB images.This paper presents robust human activity analysis for event recognition via the extraction of contextual intelligence-based features.To use human interaction image sequences as input data,we first perform a few denoising steps.Then,human-to-human analyses are employed to deliver more precise results.This phase follows feature engineering techniques,including diverse feature selection.Next,we used the graph mining method for feature optimization and AdaBoost for classification.We tested our proposed HVAA model on two benchmark datasets.The testing of the proposed HVAA system exhibited a mean accuracy of 92.15%for the Sport Videos in theWild(SVW)dataset.The second benchmark dataset,UT-interaction,had a mean accuracy of 92.83%.Therefore,these results demonstrated a better recognition rate and outperformed other novel techniques in body part tracking and event detection.The proposed HVAA system can be utilized in numerous real-world applications including,healthcare,surveillance,task monitoring,atomic actions,gesture and posture analysis.展开更多
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap...As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development.展开更多
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma...Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.展开更多
Humankind is facing another deadliest pandemic of all times in history,caused by COVID-19.Apart from this challenging pandemic,World Health Organization(WHO)considers tuberculosis(TB)as a preeminent infectious disease...Humankind is facing another deadliest pandemic of all times in history,caused by COVID-19.Apart from this challenging pandemic,World Health Organization(WHO)considers tuberculosis(TB)as a preeminent infectious disease due to its high infection rate.Generally,both TB and COVID-19 severely affect the lungs,thus hardening the job of medical practitioners who can often misidentify these diseases in the current situation.Therefore,the time of need calls for an immediate and meticulous automatic diagnostic tool that can accurately discriminate both diseases.As one of the preliminary smart health systems that examine three clinical states(COVID-19,TB,and normal cases),this study proposes an amalgam of image filtering,data-augmentation technique,transfer learning-based approach,and advanced deep-learning classifiers to effectively segregate these diseases.It first employed a generative adversarial network(GAN)and Crimmins speckle removal filter on X-ray images to overcome the issue of limited data and noise.Each pre-processed image is then converted into red,green,and blue(RGB)and Commission Internationale de l’Elcairage(CIE)color spaces from which deep fused features are formed by extracting relevant features using DenseNet121 and ResNet50.Each feature extractor extracts 1000 most useful features which are then fused and finally fed to two variants of recurrent neural network(RNN)classifiers for precise discrimination of threeclinical states.Comparative analysis showed that the proposed Bi-directional long-short-term-memory(Bi-LSTM)model dominated the long-short-termmemory(LSTM)network by attaining an overall accuracy of 98.22%for the three-class classification task,whereas LSTM hardly achieved 94.22%accuracy on the test dataset.展开更多
With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies h...With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies have shown that the deeper the network is,the more abstract the features are.However,the recognition ability of deep features would be limited by insufficient training samples.To address this problem,this paper derives an improved Deep Fusion Convolutional Neural Network(DF-Net)which can make full use of the differences and complementarities during network learning and enhance feature expression under the condition of limited datasets.Specifically,DF-Net organizes two identical subnets to extract features from the input image in parallel,and then a well-designed fusion module is introduced to the deep layer of DF-Net to fuse the subnet’s features in multi-scale.Thus,the more complex mappings are created and the more abundant and accurate fusion features can be extracted to improve recognition accuracy.Furthermore,a corresponding training strategy is also proposed to speed up the convergence and reduce the computation overhead of network training.Finally,DF-Nets based on the well-known ResNet,DenseNet and MobileNetV2 are evaluated on CIFAR100,Stanford Dogs,and UECFOOD-100.Theoretical analysis and experimental results strongly demonstrate that DF-Net enhances the performance of DCNNs and increases the accuracy of image recognition.展开更多
Data fusion is one of the challenging issues,the healthcare sector is facing in the recent years.Proper diagnosis from digital imagery and treatment are deemed to be the right solution.Intracerebral Haemorrhage(ICH),a...Data fusion is one of the challenging issues,the healthcare sector is facing in the recent years.Proper diagnosis from digital imagery and treatment are deemed to be the right solution.Intracerebral Haemorrhage(ICH),a condition characterized by injury of blood vessels in brain tissues,is one of the important reasons for stroke.Images generated by X-rays and Computed Tomography(CT)are widely used for estimating the size and location of hemorrhages.Radiologists use manual planimetry,a time-consuming process for segmenting CT scan images.Deep Learning(DL)is the most preferred method to increase the efficiency of diagnosing ICH.In this paper,the researcher presents a unique multi-modal data fusion-based feature extraction technique with Deep Learning(DL)model,abbreviated as FFE-DL for Intracranial Haemorrhage Detection and Classification,also known as FFEDL-ICH.The proposed FFEDL-ICH model has four stages namely,preprocessing,image segmentation,feature extraction,and classification.The input image is first preprocessed using the Gaussian Filtering(GF)technique to remove noise.Secondly,the Density-based Fuzzy C-Means(DFCM)algorithm is used to segment the images.Furthermore,the Fusion-based Feature Extraction model is implemented with handcrafted feature(Local Binary Patterns)and deep features(Residual Network-152)to extract useful features.Finally,Deep Neural Network(DNN)is implemented as a classification technique to differentiate multiple classes of ICH.The researchers,in the current study,used benchmark Intracranial Haemorrhage dataset and simulated the FFEDL-ICH model to assess its diagnostic performance.The findings of the study revealed that the proposed FFEDL-ICH model has the ability to outperform existing models as there is a significant improvement in its performance.For future researches,the researcher recommends the performance improvement of FFEDL-ICH model using learning rate scheduling techniques for DNN.展开更多
With the rapid development of information technology,the speed and efficiency of image retrieval are increasingly required in many fields,and a compelling image retrieval method is critical for the development of info...With the rapid development of information technology,the speed and efficiency of image retrieval are increasingly required in many fields,and a compelling image retrieval method is critical for the development of information.Feature extraction based on deep learning has become dominant in image retrieval due to their discrimination more complete,information more complementary and higher precision.However,the high-dimension deep features extracted by CNNs(convolutional neural networks)limits the retrieval efficiency and makes it difficult to satisfy the requirements of existing image retrieval.To solving this problem,the high-dimension feature reduction technology is proposed with improved CNN and PCA quadratic dimensionality reduction.Firstly,in the last layer of the classical networks,this study makes a well-designed DR-Module(dimensionality reduction module)to compress the number of channels of the feature map as much as possible,and ensures the amount of information.Secondly,the deep features are compressed again with PCA(Principal Components Analysis),and the compression ratios of the two dimensionality reductions are reduced,respectively.Therefore,the retrieval efficiency is dramatically improved.Finally,it is proved on the Cifar100 and Caltech101 datasets that the novel method not only improves the retrieval accuracy but also enhances the retrieval efficiency.Experimental results strongly demonstrate that the proposed method performs well in small and medium-sized datasets.展开更多
Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacillicul...Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set.展开更多
Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the s...Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.展开更多
Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional n...Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry.展开更多
Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Fir...Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Firstly,the occlusion judgment is realized by extracting and utilizing deep feature of pedestrian’s appearance,and then the scale adaptive kernelized correlation filter is introduced to implement pedestrian tracking without occlusion.Secondly,Karman filter is introduced to predict the location of occluded pedestrian position.Finally,the deep feature is used to the rematch of pedestrian in the reappearance process.Simulation experiment and analysis show that the proposed algorithm can effectively detect and rematch pedestrian under the condition of frequent or long-term occlusion.展开更多
Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resol...Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resolution of moving targets in UAV applications, it is difficult to extract target features and identify them. In order to solve this problem, we propose a new re-identification(re-ID) network to extract association features for tracking in the association stage. Moreover, in order to reduce the complexity of detection model, we perform the lightweight optimization for it. Experimental results show that the proposed re-ID network can effectively reduce the number of identity switches, and surpass current state-of-the-art algorithms. In the meantime, the optimized detector can increase the speed by 27% owing to its lightweight design, which enables it to further meet the requirements of UAV tracking tasks.展开更多
Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an...Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an image.However,there is still room for improvement in terms of detection effi-ciency.This study aims to develop a technique for detecting objects in images.To enhance overall detection performance,we considered object detection a two-fold problem,including localization and classification.The proposed method generates class-independent,high-quality,and precise proposals using an agglomerative clustering technique.We then combine these proposals with the relevant input image to train our network on convolutional features.Next,a network refinement module decreases the quantity of generated proposals to produce fewer high-quality candidate proposals.Finally,revised candidate proposals are sent into the network’s detection process to determine the object type.The algorithm’s performance is evaluated using publicly available the PASCAL Visual Object Classes Challenge 2007(VOC2007),VOC2012,and Microsoft Common Objects in Context(MS-COCO)datasets.Using only 100 proposals per image at intersection over union((IoU)=0.5 and 0.7),the proposed method attains Detection Recall(DR)rates of(93.17%and 79.35%)and(69.4%and 58.35%),and Mean Average Best Overlap(MABO)values of(79.25%and 62.65%),for the VOC2007 and MS-COCO datasets,respectively.Besides,it achieves a Mean Average Precision(mAP)of(84.7%and 81.5%)on both VOC datasets.The experiment findings reveal that our method exceeds previous approaches in terms of overall detection performance,proving its effectiveness.展开更多
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s...The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.展开更多
The Internet ofMedical Things(IoMT)and cloud-based healthcare applications,services are beneficial for better decision-making in recent years.Melanoma is a deadly cancer with a highermortality rate than other skin can...The Internet ofMedical Things(IoMT)and cloud-based healthcare applications,services are beneficial for better decision-making in recent years.Melanoma is a deadly cancer with a highermortality rate than other skin cancer types such as basal cell,squamous cell,andMerkel cell.However,detection and treatment at an early stage can result in a higher chance of survival.The classical methods of detection are expensive and labor-intensive.Also,they rely on a trained practitioner’s level,and the availability of the needed equipment is essential for the early detection of Melanoma.The current improvement in computer-aided systems is providing very encouraging results in terms of precision and effectiveness.In this article,we propose an improved region growing technique for efficient extraction of the lesion boundary.This analysis and detection ofMelanoma are helpful for the expert dermatologist.The CNN features are extracted using the pre-trained VGG-19 deep learning model.In the end,the selected features are classified by SVM.The proposed technique is gauged on openly accessible two datasets ISIC 2017 and PH2.For the evaluation of our proposed framework,qualitative and quantitative experiments are performed.The suggested segmentation method has provided encouraging statistical results of Jaccard index 0.94,accuracy 95.7%on ISIC 2017,and Jaccard index 0.91,accuracy 93.3%on the PH2 dataset.These results are notably better than the results of prevalent methods available on the same datasets.The machine learning SVMclassifier executes significantly well on the suggested feature vector,and the comparative analysis is carried out with existing methods in terms of accuracy.The proposed method detects and classifies melanoma far better than other methods.Besides,our framework gained promising results in both segmentation and classification phases.展开更多
Image retrieval for food ingredients is important work,tremendously tiring,uninteresting,and expensive.Computer vision systems have extraordinary advancements in image retrieval with CNNs skills.But it is not feasible...Image retrieval for food ingredients is important work,tremendously tiring,uninteresting,and expensive.Computer vision systems have extraordinary advancements in image retrieval with CNNs skills.But it is not feasible for small-size food datasets using convolutional neural networks directly.In this study,a novel image retrieval approach is presented for small and medium-scale food datasets,which both augments images utilizing image transformation techniques to enlarge the size of datasets,and promotes the average accuracy of food recognition with state-of-the-art deep learning technologies.First,typical image transformation techniques are used to augment food images.Then transfer learning technology based on deep learning is applied to extract image features.Finally,a food recognition algorithm is leveraged on extracted deepfeature vectors.The presented image-retrieval architecture is analyzed based on a smallscale food dataset which is composed of forty-one categories of food ingredients and one hundred pictures for each category.Extensive experimental results demonstrate the advantages of image-augmentation architecture for small and medium datasets using deep learning.The novel approach combines image augmentation,ResNet feature vectors,and SMO classification,and shows its superiority for food detection of small/medium-scale datasets with comprehensive experiments.展开更多
基金supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
文摘Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods.
基金National Key Research and Development Program of China(2022YFC3502302)National Natural Science Foundation of China(82074580)Graduate Research Innovation Program of Jiangsu Province(KYCX23_2078).
文摘Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance.
基金This research project was supported by the Deanship of Scientific Research,Prince Sattam Bin Abdulaziz University,KSA,Project Grant No.2021/01/18613.
文摘White blood cells(WBC)are immune system cells,which is why they are also known as immune cells.They protect the human body from a variety of dangerous diseases and outside invaders.The majority of WBCs come from red bone marrow,although some come from other important organs in the body.Because manual diagnosis of blood disorders is difficult,it is necessary to design a computerized technique.Researchers have introduced various automated strategies in recent years,but they still face several obstacles,such as imbalanced datasets,incorrect feature selection,and incorrect deep model selection.We proposed an automated deep learning approach for classifying white blood disorders in this paper.The data augmentation approach is initially used to increase the size of a dataset.Then,a Darknet-53 pre-trained deep learning model is used and finetuned according to the nature of the chosen dataset.On the fine-tuned model,transfer learning is used,and features engineering is done on the global average pooling layer.The retrieved characteristics are subsequently improved with a specified number of iterations using a hybrid reformed binary grey wolf optimization technique.Following that,machine learning classifiers are used to classify the selected best features for final classification.The experiment was carried out using a dataset of increased blood diseases imaging and resulted in an improved accuracy of over 99%.
文摘Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one of the most complex machine learning tasks in recent times.Numerous models rely on various parameters,such as the detection rate,position,and direction of human body components in RGB images.This paper presents robust human activity analysis for event recognition via the extraction of contextual intelligence-based features.To use human interaction image sequences as input data,we first perform a few denoising steps.Then,human-to-human analyses are employed to deliver more precise results.This phase follows feature engineering techniques,including diverse feature selection.Next,we used the graph mining method for feature optimization and AdaBoost for classification.We tested our proposed HVAA model on two benchmark datasets.The testing of the proposed HVAA system exhibited a mean accuracy of 92.15%for the Sport Videos in theWild(SVW)dataset.The second benchmark dataset,UT-interaction,had a mean accuracy of 92.83%.Therefore,these results demonstrated a better recognition rate and outperformed other novel techniques in body part tracking and event detection.The proposed HVAA system can be utilized in numerous real-world applications including,healthcare,surveillance,task monitoring,atomic actions,gesture and posture analysis.
基金the National Basic Research Program of China (973 Program, 2011CB201100)‘‘Complex hydrocarbon accumulation mechanism and enrichmentregularities of deep superimposed basins in Western China’’ National Natural Science Foundation of China (U1262205) under the guidance of related department heads and experts
文摘As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development.
基金This research was funded by the National Natural Science Foundation of China(21878124,31771680 and 61773182).
文摘Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models.
文摘Humankind is facing another deadliest pandemic of all times in history,caused by COVID-19.Apart from this challenging pandemic,World Health Organization(WHO)considers tuberculosis(TB)as a preeminent infectious disease due to its high infection rate.Generally,both TB and COVID-19 severely affect the lungs,thus hardening the job of medical practitioners who can often misidentify these diseases in the current situation.Therefore,the time of need calls for an immediate and meticulous automatic diagnostic tool that can accurately discriminate both diseases.As one of the preliminary smart health systems that examine three clinical states(COVID-19,TB,and normal cases),this study proposes an amalgam of image filtering,data-augmentation technique,transfer learning-based approach,and advanced deep-learning classifiers to effectively segregate these diseases.It first employed a generative adversarial network(GAN)and Crimmins speckle removal filter on X-ray images to overcome the issue of limited data and noise.Each pre-processed image is then converted into red,green,and blue(RGB)and Commission Internationale de l’Elcairage(CIE)color spaces from which deep fused features are formed by extracting relevant features using DenseNet121 and ResNet50.Each feature extractor extracts 1000 most useful features which are then fused and finally fed to two variants of recurrent neural network(RNN)classifiers for precise discrimination of threeclinical states.Comparative analysis showed that the proposed Bi-directional long-short-term-memory(Bi-LSTM)model dominated the long-short-termmemory(LSTM)network by attaining an overall accuracy of 98.22%for the three-class classification task,whereas LSTM hardly achieved 94.22%accuracy on the test dataset.
基金This work is partially supported by National Natural Foundation of China(Grant No.61772561)the Key Research&Development Plan of Hunan Province(Grant No.2018NK2012)+2 种基金the Degree&Postgraduate Education Reform Project of Hunan Province(Grant No.2019JGYB154)the Postgraduate Excellent teaching team Project of Hunan Province(Grant[2019]370-133)Teaching Reform Project of Central South University of Forestry and Technology(Grant No.20180682).
文摘With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies have shown that the deeper the network is,the more abstract the features are.However,the recognition ability of deep features would be limited by insufficient training samples.To address this problem,this paper derives an improved Deep Fusion Convolutional Neural Network(DF-Net)which can make full use of the differences and complementarities during network learning and enhance feature expression under the condition of limited datasets.Specifically,DF-Net organizes two identical subnets to extract features from the input image in parallel,and then a well-designed fusion module is introduced to the deep layer of DF-Net to fuse the subnet’s features in multi-scale.Thus,the more complex mappings are created and the more abundant and accurate fusion features can be extracted to improve recognition accuracy.Furthermore,a corresponding training strategy is also proposed to speed up the convergence and reduce the computation overhead of network training.Finally,DF-Nets based on the well-known ResNet,DenseNet and MobileNetV2 are evaluated on CIFAR100,Stanford Dogs,and UECFOOD-100.Theoretical analysis and experimental results strongly demonstrate that DF-Net enhances the performance of DCNNs and increases the accuracy of image recognition.
文摘Data fusion is one of the challenging issues,the healthcare sector is facing in the recent years.Proper diagnosis from digital imagery and treatment are deemed to be the right solution.Intracerebral Haemorrhage(ICH),a condition characterized by injury of blood vessels in brain tissues,is one of the important reasons for stroke.Images generated by X-rays and Computed Tomography(CT)are widely used for estimating the size and location of hemorrhages.Radiologists use manual planimetry,a time-consuming process for segmenting CT scan images.Deep Learning(DL)is the most preferred method to increase the efficiency of diagnosing ICH.In this paper,the researcher presents a unique multi-modal data fusion-based feature extraction technique with Deep Learning(DL)model,abbreviated as FFE-DL for Intracranial Haemorrhage Detection and Classification,also known as FFEDL-ICH.The proposed FFEDL-ICH model has four stages namely,preprocessing,image segmentation,feature extraction,and classification.The input image is first preprocessed using the Gaussian Filtering(GF)technique to remove noise.Secondly,the Density-based Fuzzy C-Means(DFCM)algorithm is used to segment the images.Furthermore,the Fusion-based Feature Extraction model is implemented with handcrafted feature(Local Binary Patterns)and deep features(Residual Network-152)to extract useful features.Finally,Deep Neural Network(DNN)is implemented as a classification technique to differentiate multiple classes of ICH.The researchers,in the current study,used benchmark Intracranial Haemorrhage dataset and simulated the FFEDL-ICH model to assess its diagnostic performance.The findings of the study revealed that the proposed FFEDL-ICH model has the ability to outperform existing models as there is a significant improvement in its performance.For future researches,the researcher recommends the performance improvement of FFEDL-ICH model using learning rate scheduling techniques for DNN.
基金supported by National Natural Foundation of China(Grant No.61772561)the Key Research&Development Plan of Hunan Province(Grant No.2018NK2012).
文摘With the rapid development of information technology,the speed and efficiency of image retrieval are increasingly required in many fields,and a compelling image retrieval method is critical for the development of information.Feature extraction based on deep learning has become dominant in image retrieval due to their discrimination more complete,information more complementary and higher precision.However,the high-dimension deep features extracted by CNNs(convolutional neural networks)limits the retrieval efficiency and makes it difficult to satisfy the requirements of existing image retrieval.To solving this problem,the high-dimension feature reduction technology is proposed with improved CNN and PCA quadratic dimensionality reduction.Firstly,in the last layer of the classical networks,this study makes a well-designed DR-Module(dimensionality reduction module)to compress the number of channels of the feature map as much as possible,and ensures the amount of information.Secondly,the deep features are compressed again with PCA(Principal Components Analysis),and the compression ratios of the two dimensionality reductions are reduced,respectively.Therefore,the retrieval efficiency is dramatically improved.Finally,it is proved on the Cifar100 and Caltech101 datasets that the novel method not only improves the retrieval accuracy but also enhances the retrieval efficiency.Experimental results strongly demonstrate that the proposed method performs well in small and medium-sized datasets.
文摘Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set.
基金This study was supported by the grants of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute(KHIDI),funded by the Ministry of Health&Welfare(HI18C1216)and the Soonchunhyang University Research Fund.
文摘Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better.
基金Supported by the National Key Research and Development Program of China(2019YFE0125600)China Agriculture Research System(CARS-36)。
文摘Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry.
基金the National Natural Science Foundation of China(No.61976080,61771006)the Key Project of Henan Province Education Department(No.19A413006).
文摘Aiming to the problem of pedestrian tracking with frequent or long-term occlusion in complex scenes,an anti-occlusion pedestrian tracking algorithm based on location prediction and deep feature rematch is proposed.Firstly,the occlusion judgment is realized by extracting and utilizing deep feature of pedestrian’s appearance,and then the scale adaptive kernelized correlation filter is introduced to implement pedestrian tracking without occlusion.Secondly,Karman filter is introduced to predict the location of occluded pedestrian position.Finally,the deep feature is used to the rematch of pedestrian in the reappearance process.Simulation experiment and analysis show that the proposed algorithm can effectively detect and rematch pedestrian under the condition of frequent or long-term occlusion.
基金supported by the Research Foundation of Nanjing University of Posts and Telecommunications (No.NY219076)。
文摘Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resolution of moving targets in UAV applications, it is difficult to extract target features and identify them. In order to solve this problem, we propose a new re-identification(re-ID) network to extract association features for tracking in the association stage. Moreover, in order to reduce the complexity of detection model, we perform the lightweight optimization for it. Experimental results show that the proposed re-ID network can effectively reduce the number of identity switches, and surpass current state-of-the-art algorithms. In the meantime, the optimized detector can increase the speed by 27% owing to its lightweight design, which enables it to further meet the requirements of UAV tracking tasks.
基金funded by Huanggang Normal University,China,Self-type Project of 2021(No.30120210103)and 2022(No.2042021008).
文摘Object detection in images has been identified as a critical area of research in computer vision image processing.Research has developed several novel methods for determining an object’s location and category from an image.However,there is still room for improvement in terms of detection effi-ciency.This study aims to develop a technique for detecting objects in images.To enhance overall detection performance,we considered object detection a two-fold problem,including localization and classification.The proposed method generates class-independent,high-quality,and precise proposals using an agglomerative clustering technique.We then combine these proposals with the relevant input image to train our network on convolutional features.Next,a network refinement module decreases the quantity of generated proposals to produce fewer high-quality candidate proposals.Finally,revised candidate proposals are sent into the network’s detection process to determine the object type.The algorithm’s performance is evaluated using publicly available the PASCAL Visual Object Classes Challenge 2007(VOC2007),VOC2012,and Microsoft Common Objects in Context(MS-COCO)datasets.Using only 100 proposals per image at intersection over union((IoU)=0.5 and 0.7),the proposed method attains Detection Recall(DR)rates of(93.17%and 79.35%)and(69.4%and 58.35%),and Mean Average Best Overlap(MABO)values of(79.25%and 62.65%),for the VOC2007 and MS-COCO datasets,respectively.Besides,it achieves a Mean Average Precision(mAP)of(84.7%and 81.5%)on both VOC datasets.The experiment findings reveal that our method exceeds previous approaches in terms of overall detection performance,proving its effectiveness.
文摘The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model.
文摘The Internet ofMedical Things(IoMT)and cloud-based healthcare applications,services are beneficial for better decision-making in recent years.Melanoma is a deadly cancer with a highermortality rate than other skin cancer types such as basal cell,squamous cell,andMerkel cell.However,detection and treatment at an early stage can result in a higher chance of survival.The classical methods of detection are expensive and labor-intensive.Also,they rely on a trained practitioner’s level,and the availability of the needed equipment is essential for the early detection of Melanoma.The current improvement in computer-aided systems is providing very encouraging results in terms of precision and effectiveness.In this article,we propose an improved region growing technique for efficient extraction of the lesion boundary.This analysis and detection ofMelanoma are helpful for the expert dermatologist.The CNN features are extracted using the pre-trained VGG-19 deep learning model.In the end,the selected features are classified by SVM.The proposed technique is gauged on openly accessible two datasets ISIC 2017 and PH2.For the evaluation of our proposed framework,qualitative and quantitative experiments are performed.The suggested segmentation method has provided encouraging statistical results of Jaccard index 0.94,accuracy 95.7%on ISIC 2017,and Jaccard index 0.91,accuracy 93.3%on the PH2 dataset.These results are notably better than the results of prevalent methods available on the same datasets.The machine learning SVMclassifier executes significantly well on the suggested feature vector,and the comparative analysis is carried out with existing methods in terms of accuracy.The proposed method detects and classifies melanoma far better than other methods.Besides,our framework gained promising results in both segmentation and classification phases.
文摘Image retrieval for food ingredients is important work,tremendously tiring,uninteresting,and expensive.Computer vision systems have extraordinary advancements in image retrieval with CNNs skills.But it is not feasible for small-size food datasets using convolutional neural networks directly.In this study,a novel image retrieval approach is presented for small and medium-scale food datasets,which both augments images utilizing image transformation techniques to enlarge the size of datasets,and promotes the average accuracy of food recognition with state-of-the-art deep learning technologies.First,typical image transformation techniques are used to augment food images.Then transfer learning technology based on deep learning is applied to extract image features.Finally,a food recognition algorithm is leveraged on extracted deepfeature vectors.The presented image-retrieval architecture is analyzed based on a smallscale food dataset which is composed of forty-one categories of food ingredients and one hundred pictures for each category.Extensive experimental results demonstrate the advantages of image-augmentation architecture for small and medium datasets using deep learning.The novel approach combines image augmentation,ResNet feature vectors,and SMO classification,and shows its superiority for food detection of small/medium-scale datasets with comprehensive experiments.