期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
Tectonic Framework and Deep Structure of South China and Their Constraint to Oil-Gas Field Distribution 被引量:16
1
作者 WANG Qingchen LIU Jinsong +1 位作者 DU Zhili CAI Liguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期170-178,共9页
South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpa... South China could be divided into one stable craton, the Yangtze Craton (YzC), and several orogenic belts in the surrounding region, that is the Triassic Qinling-Dabie Orogenic Belt (QDOB) in the north, the Songpan-Garze Orogenic Belt (SGOB) in the northwest, the Mesozoic-Cenozoic Threeriver Orogenic Belt (TOB) in the west, the Youjiang Orogenic Belt (YOB) in the southwest, the Middle Paleozoic Huanan Orogenic Belt (HOB) in the southeast, and the Mesozoic-Cenozoic Maritime Orogenic Belt (MOB) along the coast. Seismic tomographic images reveal that the Moho depth is deeper than 40 km and the lithosphere is about 210 km thick beneath the YzC. The SGOB is characterized by thick crust (〉40 km) and thin lithosphere (〈150 km). The HOB, YOB and MOB have a thin crust (〈40 km) and thin lithosphere (〈150 km). Terrestrial heat flow survey revealed a distribution pattern with a low heat flow region in the eastern YzC and western HOB and two high heat flow regions in the TOB and MOB respectively. Such a "high-low-high" heat flow distribution pattern could have resulted from Cenozoic asthenosphere upwelling. All oil-gas fields are concentrated in the central part of the YzC. Remnant oil pools have been discovered along the southern margin of the YzC and its adjacent orogenic belts. From a viewpoint of geological and geophysical structure, regions in South China with thick lithosphere and low heat flow value, as well as weak deformation, might be the ideal region for further petroleum exploration. 展开更多
关键词 deep structure heat flow PETROLEUM seismic tomography South China
下载PDF
The Deep Structure Feature of the Sichuan Basin and Adjacent Orogens 被引量:3
2
作者 XIONG Xiaosong GAO Rui +2 位作者 GUO Lianghui WANG Haiyan JIANG Zhuwei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第4期1153-1164,共12页
The basin-mountain system in the Sichuan Basin (SCB) reflects the main tectonic activity and the orogenic denudation in this region. The seismic probing work reveals the deep structure of the basin-mountain system. ... The basin-mountain system in the Sichuan Basin (SCB) reflects the main tectonic activity and the orogenic denudation in this region. The seismic probing work reveals the deep structure of the basin-mountain system. The seismic work was re-sampled to the Moho depth and the sedimentary thickness as well as the P-wave velocity=depth function to analyze the deep structure of the SCB and adjacent orogens. The results show two deposit centers in the SCB: the Deyang area in the west and the Nanchuan area in the east and depression uplift exists in the southwestern part of the SCB; the Moho shallowers gradually from the west to east (ca. 62-36 km deep),the South-North seismic belt (SNSB) is very distinctive: the Moho depth is much shallower (〈 50 km)to the east of the SNSB, whereas it is much deeper(〉50 kin)to the west of the SNSB, suggesting that the SNSB rather than the Longmen Shan tectonic belt is a main Moho transition belt; the topography and the top interface of the basement have the same undulation trend when the sedimentary thickness and the Moho depth have a mirror relationship; the low velocity zone developed in the Kangdian thrust and fold belt and Songpan-Garze belt implied a soft, weak and thick crust there showing tectonic activity in these areas. 展开更多
关键词 Sichuan basin basin-range contact zone deep structure top interface of basement Mohodepth
下载PDF
Deep Structures in China and Its Adjacent Areas: Plate Tectonics and Its Metallogenic Significance 被引量:1
3
作者 Chen Shengzao Institute of Geophysics, State Seismological Bureau, Beijing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1995年第3期223-239,共17页
This paper proposes a new tectonic pattern of the deep-seated structures in China and its adjacent areas (including the T - A - B system of the Ryukyu Islands). This is based on studies of the gravity field and gravit... This paper proposes a new tectonic pattern of the deep-seated structures in China and its adjacent areas (including the T - A - B system of the Ryukyu Islands). This is based on studies of the gravity field and gravity inversion coupled with the summation of the most recent achievements in geophysical studies. From a plate-tectonic point of view, the metallogenic characteristics and their indications at depth, as well as relevant geophysical-geological characteristics of four tectonic environments of the Chinese continent are analysed, and a classification of composite metallogenic provinces and belts and prediction of metallogenic prospects are made. The author extends the Kunlun-Qilian-Qinling tectonic belt to the T-A-B system of the Ryukyu Islands through the NW deep boundary of the Hangzhou Bay, and also proposes the following basic views' the migration and superposition of tectonic environments led to the formation of a composite metallogenic system; the change in the tectonic environment resulted in the superposition of various types of mineral deposits; seismic activities and metallogeny are mutually inducing factors. These views will be helpful to a discussion on the tectonic environments and metallogenic regularities. 展开更多
关键词 deep structure tectonic environment METALLOGENY
下载PDF
Relationship between the Extent of Igneous Rocks and Deep Structures as Determined by Gravitational and Magnetic Data in the South China Sea 被引量:1
4
作者 YANG Min WANG Wanyin +1 位作者 ZHANG Gongcheng MA Jie 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第1期294-304,共11页
The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Ign... The distribution of oil and gas resources in the South China Sea and adjacent areas is closely related to the structural pattern that helped to define the controlling effect of deep processes on oil-bearing basins.Igneous rocks can record important information from deep processes.Deep structures such as faults,basin uplift and depression,Cenozoic basement and magnetic basement are all the results of energy exchange within the earth.The study of the relationship between igneous rocks and deep structures is of great significance for the study of the South China Sea.By using the minimum curvature potential field separation technique and the correlation analysis technique of gravitational and magnetic anomalies,the fusion of gravitational and magnetic data reflecting igneous rocks can be obtained,through which the igneous rocks with high susceptibility/high density or high susceptibility/low density can be identified.In this study area,igneous rocks do not develop in the Yinggehai basin,Qiongdongnan basin,Zengmu basin and Brunei-Sabah basin whilst igneous rocks with high susceptibility/high density or high susceptibility/low density are widely-developed in other basins.In undeveloped igneous areas,faults are also undeveloped the Cenozoic thickness is greater,the magnetic basement depth is greater and the Cenozoic thickness is highly positively correlated with the magnetic basement depth.In igneously developed regions,the distribution pattern of the Qiongtai block is mainly controlled by primary faults,while the distribution of the Zhongxisha block,Xunta block and Yongshu-Taiping block is mainly controlled by secondary faults,the Cenozoic thickness having a low correlation with the depth of the magnetic basement. 展开更多
关键词 igneous rocks fusion of gravity and magnetic data deep structures South China Sea
下载PDF
On Deep Structures of the Xikang-Yunnan Axis 被引量:1
5
作者 Yuan Xuecheng Bureau of Exploration Geophysics and Geochemistry,Ministry of Geology and Mineral Resources, Beijing Liu Linqun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1989年第3期211-225,共15页
Through recent study, the author considers that the north-south-trending Kangding-Honghe tectonic belt is not a marginal uplift zone of the Yangtze Platform but a Tethyan-type collisional tectonic belt of which the cr... Through recent study, the author considers that the north-south-trending Kangding-Honghe tectonic belt is not a marginal uplift zone of the Yangtze Platform but a Tethyan-type collisional tectonic belt of which the crust-upper mantle can be structurally divided into three layers. The upper layer is the brittle upper crust, dominated by overthrusting and imbrication; the middle layer is the plastic lower crust and part of the upper mantle, represented by compression and shortening; and the lower layer is the upper mantle, probably belonging to the Yangtze Platform in light of the thickness of the lithosphere. 展开更多
关键词 On deep structures of the Xikang-Yunnan Axis
下载PDF
Deep structure of the Southeast Asian curved subduction system and its dynamic process
6
作者 Weiwei DING 《Journal of Oceanology and Limnology》 SCIE CAS 2024年第3期701-704,共4页
The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.B... The deep structure,material circulation,and dynamic processes in the Southeast Asia have long been an elusive scientific puzzle due to the lack of systematic scientific observations and recognized theoretical models.Based on the deep seismic tomography using long-period natural earthquake data,in this study,the deep structure and material circulation of the curved subduction system in Southeast Asia was studied,and the dynamic processes since 100 million years ago was reconstructed.It is pointed out that challenges still exist in the precise reconstruction of deep mantle structures of the study area,the influence of multi-stage subduction on deep material exchange and shallow magma activity,as well as the spatiotemporal evolution and coupling mechanism of multi-plate convergence.Future work should focus on high-resolution land-sea joint 3-D seismic tomography imaging of the curved subduction system in the Southeast Asia,combined with geochemical analysis and geodynamic modelling works. 展开更多
关键词 curved subduction system deep structure material recycling dynamic process Southeast Asia
下载PDF
DNEF:A New Ensemble Framework Based on Deep Network Structure
7
作者 Siyu Yang Ge Song +2 位作者 Yuqiao Deng Changyu Liu Zhuoyu Ou 《Computers, Materials & Continua》 SCIE EI 2023年第12期4055-4072,共18页
Deep neural networks have achieved tremendous success in various fields,and the structure of these networks is a key factor in their success.In this paper,we focus on the research of ensemble learning based on deep ne... Deep neural networks have achieved tremendous success in various fields,and the structure of these networks is a key factor in their success.In this paper,we focus on the research of ensemble learning based on deep network structure and propose a new deep network ensemble framework(DNEF).Unlike other ensemble learning models,DNEF is an ensemble learning architecture of network structures,with serial iteration between the hidden layers,while base classifiers are trained in parallel within these hidden layers.Specifically,DNEF uses randomly sampled data as input and implements serial iteration based on the weighting strategy between hidden layers.In the hidden layers,each node represents a base classifier,and multiple nodes generate training data for the next hidden layer according to the transfer strategy.The DNEF operates based on two strategies:(1)The weighting strategy calculates the training instance weights of the nodes according to their weaknesses in the previous layer.(2)The transfer strategy adaptively selects each node’s instances with weights as transfer instances and transfer weights,which are combined with the training data of nodes as input for the next hidden layer.These two strategies improve the accuracy and generalization of DNEF.This research integrates the ensemble of all nodes as the final output of DNEF.The experimental results reveal that the DNEF framework surpasses the traditional ensemble models and functions with high accuracy and innovative deep ensemble methods. 展开更多
关键词 Machine learning ensemble learning deep ensemble deep network structure CLASSIFICATION
下载PDF
Deep Structure and Dynamics of Passive Continental Margin from Shelf to Ocean of the Northern South China Sea 被引量:5
8
作者 吴湘杰 庞雄 +4 位作者 施和生 何敏 申俊 张向涛 胡登科 《Journal of China University of Geosciences》 SCIE CSCD 2009年第1期38-48,共11页
To study the deep dynamic mechanism leading to the difference in rifting pattern and basin structure from shelf to oceanic basin in passive continental margin, we constructed long geological sections across the shelf,... To study the deep dynamic mechanism leading to the difference in rifting pattern and basin structure from shelf to oceanic basin in passive continental margin, we constructed long geological sections across the shelf, slope and oceanic basin using new seismic data. Integrated gravity-magnetic inversion and interpretation of these sections were made with the advanced dissection method. Results show that the basement composition changes from intermediate-acid intrusive rocks in the shelf to intermediate-basic rocks in the slope. The Moho surface shoals gradually from 31 km in the shelf to 22.5 km in the uplift and then 19 km in the slope and finally to 13 km in the oceanic basin. The crust thickness also decreases gradually from 30 km in the northern fault belt to 9 km in the oceanic basin. The crustal stretching factor increases from the shelf toward the oceanic basin, with the strongest extension under the sags and the oceanic basin. The intensity of mantle upwelling controlled the style of basin structures from shelf to oceanic basin. In the Zhu 1 depression on the shelf, the crust is nearly normal, the brittle and cold upper crust mainly controlled the fault development; so the combinative grabens with single symmetric graben are characteristic. In the slope, the crust thinned with a large stretching factor, affected by the mantle upwelling. The ductile deformation controlled the faults, so there developed an asymmetric complex graben in the Baiyun (白云) sag. 展开更多
关键词 deep structure DYNAMICS passive margin geophysical inversion northern South China Sea.
原文传递
Study on relationship between deep and shallow structures along north boundary fault of Yanqing-Fanshan basin
9
作者 YU Gui-hua(于贵华) +15 位作者 XU Xi-wei(徐锡伟) ZHU Ai-lan(朱艾澜) MA Wen-tao(马文涛) DIAO Gui-ling(刁桂苓) ZHANG Si-chang(张四昌) ZHANG Xian-kang(张先康) LIU Bao-jin(刘保金) SUN Zhen-guo(孙振国) 《Acta Seismologica Sinica(English Edition)》 CSCD 2004年第1期70-79,共10页
Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface activ... Based on the results of surface geology, shallow and deep seismic survey, features of micro-earthquake activity along the north boundary fault of Yanqing-Fanshan sub-basin and their relationship with the surface active faults and the deep-seated crustal structure are analyzed using the recordings from the high-resolution digital seismic network. The focal mechanism solutions of micro-earthquakes, whose locations are precisely determined by the seismic network, have confirmed the structural characteristics to be the rotational planar normal fault and demon-strated the surface traces of the north boundary fault of Yanqing-Fanshan sub-basin. By using the digital recordings of earthquakes with the high resolutions and analyzing the mechanism solutions, our study has revealed the rela-tionship between the geological phenomena in the shallow and deep structures in Yanqing-Huailai basin and the transition features from the brittle to ductile deformation with the crustal depth. 展开更多
关键词 shallow and deep structures rotational planar normal fault focal mechanism
下载PDF
Coupling Effects on Gold Mineralization of Deep and Shallow Structures in the Northwestern Jiaodong Peninsula, Eastern China 被引量:42
10
作者 YANG Liqiang DENG Jun +1 位作者 WANG Qingfei ZHOU Yinghua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第3期400-411,共12页
For understanding the possible deep-seated processes and geodynamic constrains on gold mineralization, comprehensive physicochemical and geochemical studies of gold mineralization have been undertaken within the paleo... For understanding the possible deep-seated processes and geodynamic constrains on gold mineralization, comprehensive physicochemical and geochemical studies of gold mineralization have been undertaken within the paleo-lithosphere framework during the metailogenic epoch from the northwestern part of the Jiaodong Peninsula in this paper. A general image of the paleo-crust has been remained although it has been superimposed and reformed by post-metailogenic tectonic movements. The gold ore deposits occur usually in local uplifts and gradient belts featuring a turn from steep to gentle in granite-metamorphic contact zones, relative uplifts of gradient zones of the Curier isothermal interfaces, depressions of the Moho discontinuity and areas where depth contours are cut by isotherms perpendicularly. Gold mineralization and lithogenesis are characterized by high temperature, low pressure and high strength of thermal flux. The depth of mineralization ranges from 0.8 to 4.5 km. The depth of the top interface of the granitic complex in the metallogenic epoch is about 3 km. There is a low-velocity layer (LVL) at the bottom of the upper crust with a depth close to 19.5 km, which may be a detachment belt in the crust. The appearance of the LVL indicates the existence of paleo-hyperthermal fluid or relics of molten magma chambers, which reflects partial melting within the crust during the diagenetic and metallogenic epochs and the superposition effects of strike-slip shearing of the Taulu fault zone. The subsidence of the Moho is probably attributed to the coupling process of the NW-SE continental collision between North China and the Yangtze Block and the strike-slip movement of the Tanlu fault accompanied with underplating of mantle magma in the northwestern part of the Jiaodong Peninsula. The underplating of mantle magma may result in partial melting and make granite magma transfer upwards. This is favorable for the migration of metallogenic materials from deep to shallow to be enriched to form deposits. Coupling interactions between the strike-slip of the Taulu fault, the underplating of mantle magma, partial melting within the crust, and hyperthermal fluid, etc. may be the important factors controlling the gold mineralization and spatial structures in the metailogenic system. 展开更多
关键词 coupling of deep and shallow structures metallogenic dynamics Jiaodong Peninsula
下载PDF
Numerical Analysis of Three-Layer Deep Tunnel Composite Structure 被引量:2
11
作者 Weiwei Sun Hongping Min +3 位作者 Jianzhong Chen Chao Ruan Yanjun Zhang Lei Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第4期223-239,共17页
To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the suffic... To date,with the increasing attention of countries to urban drainage system,more and more regions around the world have begun to build water conveyance tunnels,sewage pressure deep tunnels and so on.However,the sufficient bearing capacity and corrosion resistance of the structure,which can ensure the actual service life and safety of the tunnel,remain to be further improved.Glass Fiber Reinforced Plastics(GFRP)pipe,with light weight,high strength and corrosion resistance,has the potential to be applied to the deep tunnel structure.This paper proposed a new composite structure of deep tunnel lined with GFRP pipe,which consisted of three layers of concrete segment,cement paste and GFRP pipe.A new pipe-soil spring element model was proposed for the pipesoil interaction with gaps.Based on the C3D8R solid model and the Combin39 spring model,the finite element numerical analysis of the internal pressure status and external pressure stability of the structure was carried out.Combined with the checking calculation of the theoretical formula,the reliability of the two finite element models was confirmed.A set of numerical analysis methods for the design and optimization of the three-layer structure was established.The results showed that from the internal GFRP pipe to the outer concrete pipe,the pressure decreased from 0.5 to 0.32 MPa,due to the internal pressure was mainly undertaken by the inner GFRP pipe.The allowable buckling pressure of GFRP pipe under the cover of 5 GPa high modulus cement paste was 2.66 MPa.The application of GFRP pipe not only improves the overall performance of the deep tunnel structure but also improves the construction quality and safety.The three-layer structure built in this work is safe and economical. 展开更多
关键词 GFRP pipe deep tunnel structure finite element analysis internal pressure external pressure stability pipe-soil interaction
下载PDF
Study on coupling between deep and shallow structures of Xingtai area and some significant questions 被引量:1
12
作者 顾梦林 刘保金 +1 位作者 赵成彬 孙振国 《Acta Seismologica Sinica(English Edition)》 CSCD 2000年第4期413-423,共11页
In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/re... In the light of results from study on coupling between deep and shallow structures in Xingtai earthquake area during the 'Ninth Five-Year Plan' period and other previous results from deep seismic refraction/reflection and seismic prospecting of petroleum, we infer that there exist a series of shallow faults in the upper crust above the 8 km-deep detachment surface in Xingtai macroseismic focal region, where none of the faults, including Aixinzhuang fault reaches the Quaternary stratum, except that the Xinhe fault cuts through the mid-Pleistocene formation upwards. Aixinzhuang fault and other faults extend downwards into Xinhe fault whereas the Xinhe listric fault stretches downwards at a low dip angle into the detachment surface. The abyssal fault with high dip angle under the detachment surface cutting through the middle and lower crust to Moho is the causative fault for the large Xingtai earthquake, whose dislocation can cause strong earthquakes, shallow fault activity and the motion of surface material. The shallow faults in the upper crust are not causative faults for strong earthquakes, although they may be active faults. The existence of the detachment surface brings about a special relationship between shallow and deep structures, i.e. they are relatively independent of each other and have effects on each other It not only transmits partial energy and deformation between the upper and lower crust,but also has a certain decoupling effect. Finally we conclude that active faults do not necessarily reach the latest stratum, and the age of uppermost faulted stratum cannot represent the latest active period of the fault. This put to us a significant question in regard to the age determination and study of active faults. Other noticeable questions are also inferred to in this study. 展开更多
关键词 coupling between deep and shallow structures earthquake fault active fault
下载PDF
An Investigation of Deep Electrical Structure of Qiangtang Basin,Xizang(Tibet),China
13
作者 Zhang Shengye Wei Sheng Wang JiayingDepartment of Applied Geophysics, China University of Geosciences, Wuhan 430074Zhang Xianjue5th Geophysical Prospecting Team of Central South Bureau of Petroleum Geology , Ministry oj Geology and Mineral Resources, X 《Journal of Earth Science》 SCIE CAS CSCD 1995年第2期92-96,共5页
In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along thr... In order to study the deep geoelectrical structure and the regional geological structure and detect potential oil and gas areas in Qiangtang basin in northern Xizang (Tibet ), 222 MT soundings were conducted along three N - S MT profiles across the basin .The MT results indicate that the south and north parts of the Qiangtang basin have a good contrast in the deep electri cal structure . In the south Qiangtang , there are generally two high conductivity layers in the crust . The first is at a depth of about 10 - 25 km and possesses a resistivity of about 10 - 80 Ωm .The second ,the high conductivity layer in the lower crust ,is at a depth of about 40 - 70 km with 3 - 50 Ωm .In the north Qiangtang .there is generally one high conductivity layer .It is at a depth of about 10 - 30 km and the resistivity is about 1-60 Ωm . The thickness of the second high conductivity layer in both the south Qiangtang and the Bangong-Nujiang suture is much greater than that of the first .The thickness of the lithosphere is about 110-120 km for the Bangong-Nujiang suture ,115 km for the south Qiangtang and 100-130 km for the north Qiangtang . On the difference of the deep electrical structures of the crust between the south and the north Qiangtang , we believe that it is related to the eastward flow of the crustal substance . 展开更多
关键词 MT profile Qiangtang basin deep electrical structure crust and upper man-tle high conductivity layer .
下载PDF
Gravity inversion of deep-crust and mantle interfaces in the Three Gorges area 被引量:1
14
作者 Wang Jian Shen Chongyang +2 位作者 Li Hui Sun Shaoan Xing Lelin 《Geodesy and Geodynamics》 2012年第4期7-17,共11页
To better understand the heterogeneity of deep-crust and mantle interfaces in the region of the Three Gorges, China, we used the Parker-Oldenburg iterative inversion method to invert existing Bouguer gravity data from... To better understand the heterogeneity of deep-crust and mantle interfaces in the region of the Three Gorges, China, we used the Parker-Oldenburg iterative inversion method to invert existing Bouguer gravity data from the Three Gorges area ( 1 : 500000) , a new gravity map of the Three Gorges Dam ( 1 : 200000) , and the results of deep seismic soundings. The inversion results show a Moho depth of 42 km be- tween Badong and Zigui and the depth of the B2 lower-crustal interface beneath the Jianghan Plain and sur- rounding areas at 21 -25 km. The morphology of crustal interfaces and the surface geology present an over- pass structure. The mid-crust beneath the Three Gorges Dam is approximately 9 km thick, which is the thin- nest in the Three Gorges area and may be related to the shallow low-density body near the Huangling anti- cline. The upper crust is seismogenic, and there is a close relationship between seismicity and the deep- crust and mantle interfaces. For example, the MS. 1 Zigui earthquake occurred where the gradients of the Moho and the B2 interface are the steepest, showing that deep structure has a very important effect on re- gional seismicity. 展开更多
关键词 INVERSION gravity anomaly deep structure the Three Gorges area
下载PDF
Deep structural characteristics and seismogenesis of the M≥8.0 earthquakes in North China
15
作者 张先 张先康 +1 位作者 刘敏 赵丽 《Acta Seismologica Sinica(English Edition)》 CSCD 2003年第2期148-155,共8页
Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., t... Based on the results from seismogeological study, aeromagnetic inversion and deep seismic sounding (DSS), it is found that the M8.0 earthquakes in North China have three common deep structural characteristics, i.e., they all took place above the ultra-crustal deep faults or on the edges of the tectonic blocks with higher intensity, and there are low-velocity, low-density and high-conductive layers deep in the epicentral regions. The origins of the earth-quakes are also discussed and the two possibilities of seismogenesis are proposed, i.e., tectonic movement and intracrustal explosion. 展开更多
关键词 North China M8.0 earthquakes deep structure SEISMOGENESIS
下载PDF
The heterogeneous characteristics of crust-mantle structures and the seismic activities in the northwest Beijing region
16
作者 赵金仁 张先康 +5 位作者 张成科 张建狮 刘宝峰 任青芳 潘素珍 海燕 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2005年第2期125-134,254,共11页
In this paper, the abnormal characteristics of the crustal structures in the seismic active region, Yanqing-Huailai and Zhangbei-Shangyi, are obtained by means of comprehensively interpreting and studying the data of ... In this paper, the abnormal characteristics of the crustal structures in the seismic active region, Yanqing-Huailai and Zhangbei-Shangyi, are obtained by means of comprehensively interpreting and studying the data of deep seis- mic sounding profiles passing through the northwestern part of Zhangjiakou-Bohai seismic zone. The results show that the fluctuation of crystalline basement in the study region is obvious and that there exist considerable differ- ences in depth in different geological units. The locally abrupt variation of crystalline basement depths may be regarded as a mark of existence of crystalline basement faults. These crystalline basement faults and deep crustal faults provide a pass for the magma upwelling, resulting in the strong inhomogeneity of crustal structures. These phenomena of the complex seismic reflected waves and locally discontinuous reflection zones with different en- ergy indicate that the intensive squeeze and deformation of crust took place, which have led to the complex crustal structures and offered the dynamic source for the earthquake occurrence in this region. The low velocity bodies in different depths of crust and the local interface C1 in Zhangbei-Shangyi region may result from repeated magmatic activities. The certain stress accumulation in the brittle upper crust can cause the occurrence of earthquake under the action of local tectonic activity. 展开更多
关键词 northwest Beijing region seismic sounding shallow and deep structures earthquake-generating backgrounds
下载PDF
Advances in the deep tectonics and seismic anisotropy of the Lijiang-Xiaojinhe fault zone in the Sichuan-Yunnan Block,Southwestern China
17
作者 Peixi Huang Yuan Gao Bing Xue 《Earthquake Research Advances》 CSCD 2022年第1期22-32,共11页
The Sichuan-Yunnan Block(SYB)is located at the SE margin of the Qinghai-Tibetan Plateau(TP).Under the influence of the southeastward movement of material originated from the TP,intense crustal deformation,frequent sei... The Sichuan-Yunnan Block(SYB)is located at the SE margin of the Qinghai-Tibetan Plateau(TP).Under the influence of the southeastward movement of material originated from the TP,intense crustal deformation,frequent seismic activity,and complex geological structures are observed in the SYB.The Lijiang-Xiaojinhe fault(LXF)goes through the central part of the SYB,dividing it into two blocks from north to south,and forming an intersecting fault system with the surrounding faults.This paper firstly introduces the morphology and the nature of the LXF,the distribution of the regional surface displacements and the focal mechanisms,and then analyzes the medium deformation and the effects of faults.Moreover,according to the regional tectonics and geophysical patterns,the paper discusses the characteristics of the north-south blocks of the SYB and the abrupt change of deep structure along the LXF zone.Since seismic anisotropy is an essential property for detecting crustal stress,deep structures and dynamical mechanisms,this paper is dedicated to the advances in seismic anisotropy at different depths and different scales in the study area.There are noteworthy differences in the anisotropic features between the north part and the south part of the SYB,possibly associated with a clear boundary adjacent to the LXF.Such phenomenon suggests some close correlation between anisotropic zoning boundary and the LXF,although this boundary is not consistent with the LXF in strike.The results from the deformation of the crust and the upper mantle elucidate the distribution patterns of the crust-mantle coupling in the north part and the crustmantle decoupling in the south part,even though this conclusion needs to be further verified by more studies.Presently,the scientific understanding of the deep tectonics and the media deformation around the“generalized”LXF i.e.the LXF with the Jinpingshan fault on its eastern side,is still insufficient,and related equivocal topics deserve more in-depth studies. 展开更多
关键词 Sichuan-Yunnan Block Lijiang-Xiaojinhe fault North-south zoning Stress Deformation deep structure Seismic anisotropy
下载PDF
Crust and Upper Mantle Electrical Resistivity Structure in the Panxi Region of the Eastern Tibetan Plateau and Its Significance 被引量:8
18
作者 ZHANG Gang WANG Xuben +7 位作者 FANG Hui GUO Ziming ZHANG Zhaobin LUO Wei CAI Xuelin LI Jun LI Zhong WU Xing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第2期531-541,共11页
The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magne... The Panxi region is located in the frontal zone of positive squeezing subduction and side squeezing shearing between the Indian plate and the Eurasian plate. The long-period magnetotelluric (LMT) and broadband magnetotelluric (MT) techniques are both used to study the deep electrical conductivity structure in this region; magnetic and gravity surveys are also performed along the profile. According to the 2-D resistivity model along the Yanyuan-Yongshan profile, a high- conductivity layer (HCL) exists widely in the crust, and a high-resistivity block (HRB) exists widely in the upper mantle in general, as seen by the fact that a large HCL exists from the western Jinpingshan tectonic zone to the eastern Mabian tectonic zone in the crust, while the HRB found in the Panxi tectonic zone is of abnormally high resistivity in that background compared to both sides of Panxi tectonic zone. In addition, the gravity and magnetic field anomalies are of high value. Combined with geological data, the results indicate that there probably exists basic or ultrabasic rock with a large thickness in the lithosphere in the Panxi axial region, which indicates that fracture activity once occurred in the lithosphere. As a result, we can infer that the high-resistivity zone in the Panxi lithosphere is the eruption channel for Permian Emeishan basalt and the accumulation channel for basic and ultrabasic rock. The seismic sources along the profile are counted according to seismic record data. The results indicate that the most violent earthquake sources are located at the binding site of the HRB and the HCL, where the tectonic activity zone is generally acknowledged to be; however, the earthquakes occurring in the HCL are not so violent, which reflects the fact that the HCL is a plastic layer, and the fracture threshold of a plastic layer is low generally, making high stress difficult to accumulate but easy to release in the layer. As a result, a higher number of smaller earthquakes occurred in the HCL at Daliangshan tectonic zone, and violent earthquakes occurred at the binding site of high- and low-resistivity blocks at the Panxi tectonic zone. 展开更多
关键词 EARTHQUAKE deep electrical resistivity structure long-peroid magnetotelluric Emeishanbasalt Panxi region
下载PDF
Study on crust-mantle tectonics and its velocity structure along the Beijing-Huailai-Fengzhen profile 被引量:4
19
作者 祝治平 张先康 +3 位作者 张建狮 张成科 赵金仁 徐朝凡 《Acta Seismologica Sinica(English Edition)》 CSCD 1997年第5期62-70,共9页
In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai ... In order to investigate the interrelations of crust and upper mantle tectonics and its velocity distribution as well as seismicity in the Yanhuai basin and its surrounding area, a nearly EW trending Beijing Huailai Fengzhen wide angle reflection/refraction profile, which obliquely passes through seismic zone of Zhangjiakou Bohai Sea and coincides with a deep reflection profile in the Yanhuai basin, was completed recently. The results show: The crust presents layered structures and its thickness gradually increases from 35.0 km in Shunyi to 42.0 km in the west end of the profile; the interior crustal interfaces appear approximately horizontal or slowly sloping down from east to west; In the Yanhuai basin, the crust presents the characteristics of higher velocities alternating with the lower ones and the low velocity bodies obviously exist in the lower part of upper crust. Moreover, there are two deep crustal fault zones which stretch to the Moho discontinuity, are closely related with the seismicity in the Yanhuai area. 展开更多
关键词 crust mantle velocity structure deep crustal fault wide angle reflection/refraction
下载PDF
Study on the crust-mantle structure in the central and southern parts of Shanxi 被引量:3
20
作者 祝治平 张建狮 +7 位作者 张成科 赵金仁 刘明清 唐周琼 盖玉杰 任青芳 聂文英 杨清 《Acta Seismologica Sinica(English Edition)》 CSCD 1999年第1期46-54,共9页
Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regio... Another comparative interpretation was conducted with respect to the data from 5 DSS profiles in the central and southern parts of Shanxi, leading to the conclusion that in Linxian, Linfen and Xingtai earthquake regions, through which the five profiles pass, there exist anomalous crust mantle structure and abyssal crustal faults extending to Moho, all being regarded as the deep indications for earthquake occurrence. 展开更多
关键词 the central and southern parts of Shanxi deep seismic sounding crust mantle structure and deep tectonics
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部