The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi...The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.展开更多
In this paper, a robust path following control law is proposed for a deep-sea manned submersible maneuvering along a predeterminated path. Developed in China, the submersible is underactuated in the horizontal plane i...In this paper, a robust path following control law is proposed for a deep-sea manned submersible maneuvering along a predeterminated path. Developed in China, the submersible is underactuated in the horizontal plane in that it is actuated by two perpendicular thrusts in this plane. The advanced non-singular terminal sliding mode (NTSM) is implemented for the design of the path following controller, which can ensure the convergence of the motion system in finite time and improve its robustness against parametric uncertainties and environmental disturbances. In the process of controller design, the close-loop stability is considered and proved by Lyapunov' s stability theory. With the experimental data, numerical simulations are provided to verify the control law for path following of the deep-sea manned submersible.展开更多
Variable ballast systems are necessary for manned submersibles to adjust their buoyancy.In this paper,the design of a variable ballast system for a manned submersible is described.The variable ballast system uses a su...Variable ballast systems are necessary for manned submersibles to adjust their buoyancy.In this paper,the design of a variable ballast system for a manned submersible is described.The variable ballast system uses a super high pressure hydraulic seawater system.A super high pressure seawater pump and a deep-sea brushless DC motor are used to pump seawater into or from the variable ballast tank,increasing or decreasing the weight of the manned submersible.A magnetostrictive linear displacement transducer can detect the seawater level in the variable ballast tank.Some seawater valves are used to control pumping direction and control on-off states.The design and testing procedure for the valves is described.Finally,the future development of variable ballast systems and seawater hydraulic systems is projected.展开更多
This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong.To date,6 new species have ...This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong.To date,6 new species have been described,including the sponges Lophophysema eversa,Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae,Uroptychus spinulosus and Globospongicola jiaolongi;some newly recorded species from the South China Sea have also been reported.The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li(2015),as has the mitochondrial genome of the glass sponge L.eversa by Zhang et al.(2016).The population structures of two dominant species,the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons,from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough,were compared using molecular analysis.The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences.展开更多
Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the...Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.展开更多
Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the poten...Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.展开更多
Deep-sea mining activities can potentially release metals,which pose a toxicological threat to deep-sea ecosystems.Nevertheless,due to the remoteness and inaccessibility of the deep-sea biosphere,there is insufficient...Deep-sea mining activities can potentially release metals,which pose a toxicological threat to deep-sea ecosystems.Nevertheless,due to the remoteness and inaccessibility of the deep-sea biosphere,there is insufficient knowledge about the impact of metal exposure on its inhabitants.In this study,deep-sea mussel Gigantidas platifrons,a commonly used deep-sea toxicology model organism,was exposed to manganese(100,1000μg/L)or iron(500,5000μg/L)for 7 d,respectively.Manganese and iron were chosen for their high levels of occurrence within deep-sea deposits.Metal accumulation and a battery of biochemical biomarkers related to antioxidative stress in superoxide dismutase(SOD),catalase(CAT),malondialdehyde(MDA);immune function in alkaline phosphatase(AKP),acid phosphatase(ACP);and energy metabolism in pyruvate kinase(PK)and hexokinase(HK)were assessed in mussel gills.Results showed that deep-sea mussel G.platifrons exhibited a high capacity to accumulate Mn/Fe.In addition,most tested biochemical parameters were altered by metal exposure,demonstrating that metals could induce oxidative stress,suppress the immune system,and affect energy metabolism of deep-sea mussels.The integrated biomarker response(IBR)approach indicated that the exposure to Mn/Fe had a negative impact on deep-sea mussels,and Mn demonstrated a more harmful impact on deep-sea mussels than Fe.Additionally,SOD and CAT biomarkers had the greatest impact on IBR values in Mn treatments,while ACP and HK were most influential for the low-and high-dose Fe groups,respectively.This study represents the first application of the IBR approach to evaluate the toxicity of metals on deep-sea fauna and serves as a crucial framework for risk assessment of deep-sea mining-associated metal exposure.展开更多
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ...Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.展开更多
To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions...To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.展开更多
This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that th...This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.展开更多
Given the recent success in the development of several submersibles in China, people's interest in the history of submersible development is increasing. This paper presents the history of submersible development i...Given the recent success in the development of several submersibles in China, people's interest in the history of submersible development is increasing. This paper presents the history of submersible development in China, which can be briefly divided into three periods. The first one is the early period of hardship(1971–2000). Many prototype submersibles of HOVs, ROVs, and AUVs were developed at this time, but the main achievement was the establishment of special research organizations and the training of research and development personnel. The second period can be regarded as the quick development period(2001–2015). All currently used submersibles were developed during this period. The most remarkable achievement was the successful development of 7000 m-deep manned submersible "Jiaolong." The third period aims to develop 11 000 m submersibles for challenging the full ocean depth(2016–2020). In this period, two unmanned submersibles and two manned submersibles will be the significant indicators of achievement. If this 5-year plan can be successfully completed, China can play a significant role in the investigation of the deepest part of the oceans, namely, the hadal trenches(6500–11 000 m).展开更多
China's 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench...China's 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench from the depth of 5500 to 6700 m, to investigate the geological, biological and chemical characteristics in the hadal area. During the cruise, JIAOLONG deployed a gas-tight serial sampler to collect the water near the sea bottom regularly. Five days later, the sub located the sampler in another dive and retrieved it successfully from the same location, which is the first time that scientists and engineers finished the high accuracy in-situ deployment and retrieval using a manned submersible with Ultra-Short Base Line (USBL) positioning system at the depth more than 6600 m. In this task, we used not only the USBL system of the manned submersible but also a compound strategy, including five position marks, the sea floor terrain, the depth contour, and the heading of the sub. This paper introduces the compound strategy of the target deployment and retrieval with the practical diving experience of JIAOLONG, and provides a promising technique for other underwater vehicles such as manned submersible or Remote Operated Vehicle (ROV) under similar conditions.展开更多
Submersible fish cages can be submerged under the water to mitigate the negative effects that arise from severe sea conditions and improve the growing environment for the farmed fish. Thus they are increasingly applie...Submersible fish cages can be submerged under the water to mitigate the negative effects that arise from severe sea conditions and improve the growing environment for the farmed fish. Thus they are increasingly applied in offshore aquaculture. To ensure both safety and economic efficiency of submersible fish cages, it is important to determine the optimum submergence depth. In this study, a series of physical model experiments were conducted to investigate the hydrodynamic performance of a submersible fish cage at various submergence depths(1/6, 1/4, 1/3, and 1/2 of the water depth as well as the floating condition for reference) with a model scale of 1:20. The results of the physical model experiment for the different depths were compared to analyze the effects of submergence depths on the mooring line tension and the movement of the floating collar. The results showed that the mooring line tension and the floating collar movement significantly attenuated with increasing submergence depth. However, the attenuation tendency became stable when the fish cage reached a certain depth. According to the results, 1/3 of water depth was determined as the optimal submergence depth of the fish cages. Deeper submergence depths showed no significant advantage from a perspective of the hydrodynamic characteristics of the fish cage. The determination of the optimum submergence depth is beneficial for the structural design and operation safety of submersible net cages.展开更多
The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this p...The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.展开更多
This paper thoroughly studies a control system with control allocation for a manned submersible in deep sea being developed in China. The proposed control system consists of a neural-network-based direct adaptive cont...This paper thoroughly studies a control system with control allocation for a manned submersible in deep sea being developed in China. The proposed control system consists of a neural-network-based direct adaptive controller and a dynamic control allocation module. A control energy cost function is used as the optimization criteria of the control allocation module, and weighted pseudo-inverse is used to find the solution of the control allocation problem. In the presence of bounded unknown disturbance and neural networks approximation error, stability of the closed-loop control system of manned submersible is proved with Lyaponov theory. The feasibility and validity of the proposed control system is further verified through experiments conducted on a semi-physical simulation platform for the manned submersible in deep sea.展开更多
Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. ...Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.展开更多
In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained...In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained by changing the blade wrap angle while keeping unchanged all the other parameters).Such configurations have been numerically simulated in the framework of a computational model based on the Reynolds time-averaged N-S equations,the RNG k-εturbulence approach and the SIMPLE algorithm.The impact exerted by different wrap angles of the guide vane on the performance of the pump,the internal losses of the guide vane and the flow field distribution in the bladeless area at the guide vane outlet has been assessed via cross-comparison of all these cases.The results show that the wrap angle has a significant influence:the wrap angle with the highest head is different from that with the highest efficiency,and changes in this angle have a more significant effect on the head than efficiency.A moderate raise of the wrap angle can improve the properties of the flow,reduce turbulence losses and enhance the energy conversion rate inside the guide vane.Different wrap angles can also lead to different fluid circulation modes in the bladeless area from guide vane outlet to impeller inlet,while they have a weak influence on the absolute value of the velocity of the fluid entering the impeller.展开更多
Using observations in an applied cruise of the submersible Jiaolong,water characteristics,geostrophic transport,and turbulent mixing in abyssal and hadal zones of the southern Yap Trench were studied.The spatial struc...Using observations in an applied cruise of the submersible Jiaolong,water characteristics,geostrophic transport,and turbulent mixing in abyssal and hadal zones of the southern Yap Trench were studied.The spatial structures of deep water show that the abyssal water is cold,saline,and oxygen rich.The hadal water has very small changes in potential temperature and potential density,and a little decrease in salinity and obvious decrease in oxygen.The isotherm,isopycnal,and isohaline are depressed in abyss over the central trench.The turbulent mixing is enhanced in the near-bottom zone and the hadal water on the trench slope,especially at the steep slope,the dissipation rate and diffusivity is strong,which weakens the stratification.The geostrophic flows move southward in the western region of the trench and northward in the eastern region,indicating cyclonic circulation.In the central region of the trench,the water transport is^1.74 Sv southward.In the hadal zone,the northward and southward transports are balanced.Our analysis suggests that the abyssal water in the southern Yap Trench is from Lower Circumpolar Water(LCPW)and the hadal water seems to be of the isolated local water rather than LCPW.展开更多
Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the li...Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive( VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting,the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation( FFT) was carried out on the pressure signals to convert into frequency domain.From the spectra of pressure pulsation signals,the characteristics of pressure pulsation are obtained for each stage and for various speed settings which were then used to understand its variation with speed and stages.展开更多
Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur a...Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur and may cause the snap of cables,especially during the deployment period.This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods.By applying the lumped mass approach,a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force,tension force and impact force between components of submersible buoy system and seabed.Numerical integration method is used to solve the differential equations.The simulation output includes tension force,trajectory,profile and dropping location and impact force of submersible buoys.In addition,the deployment experiment of a simplified submersible buoy model was carried out.The profile and different nodes' velocities of the submersible buoy are obtained.By comparing the results of the two methods,it is found that the numerical model well simulates the actual process and conditions of the experiment.The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy.The study results will help to understand the conditions of submersible buoy's deployment,operation and recovery,and can be used to guide the design and optimization of the system.展开更多
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732979 and No.2022TQ0127)the Cooperative Research Project of the Ministry of Education's "Chunhui Program"(Grant No.HZKY20220117)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20220587)the National Natural Science Foundation of China(Grant No.52309112)。
文摘The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.
基金The paper was financially supported by the National High Technology Research and Development Programof China(863 Program) (Grant No.2002AA401002)
文摘In this paper, a robust path following control law is proposed for a deep-sea manned submersible maneuvering along a predeterminated path. Developed in China, the submersible is underactuated in the horizontal plane in that it is actuated by two perpendicular thrusts in this plane. The advanced non-singular terminal sliding mode (NTSM) is implemented for the design of the path following controller, which can ensure the convergence of the motion system in finite time and improve its robustness against parametric uncertainties and environmental disturbances. In the process of controller design, the close-loop stability is considered and proved by Lyapunov' s stability theory. With the experimental data, numerical simulations are provided to verify the control law for path following of the deep-sea manned submersible.
基金Supported by the "863" Foundation under Grant No.2002AA401000
文摘Variable ballast systems are necessary for manned submersibles to adjust their buoyancy.In this paper,the design of a variable ballast system for a manned submersible is described.The variable ballast system uses a super high pressure hydraulic seawater system.A super high pressure seawater pump and a deep-sea brushless DC motor are used to pump seawater into or from the variable ballast tank,increasing or decreasing the weight of the manned submersible.A magnetostrictive linear displacement transducer can detect the seawater level in the variable ballast tank.Some seawater valves are used to control pumping direction and control on-off states.The design and testing procedure for the valves is described.Finally,the future development of variable ballast systems and seawater hydraulic systems is projected.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB06010101)the National Natural Science Foundation of China(No.31572229)。
文摘This paper reviews the taxonomic and biodiversity studies of deep-sea invertebrates in the South China Sea based on the samples collected by the Chinese manned deep-sea submersible Jiaolong.To date,6 new species have been described,including the sponges Lophophysema eversa,Saccocalyx microhexactin and Semperella jiaolongae as well as the crustaceans Uroptychus jiaolongae,Uroptychus spinulosus and Globospongicola jiaolongi;some newly recorded species from the South China Sea have also been reported.The Bathymodiolus platifrons-Shinkaia crosnieri deep-sea cold seep community has been reported by Li(2015),as has the mitochondrial genome of the glass sponge L.eversa by Zhang et al.(2016).The population structures of two dominant species,the shrimp Shinkaia crosnieri and the mussel Bathymodiolus platifrons,from the cold seep Bathymodiolus platifrons-Shinkaia crosnieri community in the South China Sea and the hydrothermal vents in the Okinawa Trough,were compared using molecular analysis.The systematic position of the shrimp genus Globospongicola was discussed based on 16S rRNA gene sequences.
文摘Electric submersible pumps account for a considerable proportion in the development of the Bohai Oilfield. Improving the system efficiency of the electric submersible pump wells, ensuring that the units operate in the high-efficiency zone, is essential. Analysis shows that the efficiency of the electric submersible pump system depends on the wear and tear of each component of the submersible pump equipment, the setting of operational parameters, and more importantly, the production status and daily management level of the oil well. Therefore, improving the structural performance of the submersible pump product, optimizing the parameters setting of the oil well, strengthening daily management, establishing a scientific management system, and improving the production management process and system can effectively improve the production efficiency and economic benefits of the oil well, and further achieve the goal of energy saving and emission reduction. In addition, it is necessary to actively promote the concept and technology of energy saving and emission reduction, encourage oilfield enterprises to explore effective measures to reduce the energy consumption of the electric submersible pump system by strengthening the scientific management system, and achieve a green, low-carbon, and high-quality development of oilfield production to achieve the unity of economic benefits, social benefits, and environmental benefits. This article applies the above measures in the P oilfield to achieve energy optimization of submersible electric pump systems, reducing the daily power consumption of single well submersible electric pump systems by 371 kWh per day, increasing the submersible electric pump's lifespan by 200 days, generating considerable project benefits.
基金supported by the National Natural Science Foundation of China(Nos.52225107,U2106224,U1906234,51822904,and U1706223)the Fundamental Research Funds for the Central Universities(No.202041004)
文摘Deep-sea sediment disturbance may occur when collecting polymetallic nodules,resulting in the creation of plumes that could have a negative impact on the ecological environment.This study aims to investigate the potential solution of using polyaluminum chloride(PAC)in the water jet.The effects of PAC are examined through a self-designed simulation system for deep-sea polymetallic nodule collection and sediment samples from a potential deep-sea mining area.The experimental results showed that the optimal PAC dose was found to be 0.75 g/L.Compared with the test conditions without the addition of PAC,the presence of PAC leads to a reduction in volume,lower characteristic turbidity,smaller diffusion velocity,and shorter settling time of the plume.This indicates that PAC inhibits the entire development process of the plume.The addition of PAC leads to the flocculation of mm-sized particles,resulting in the formation of cm-sized flocs.The flocculation of particles decreases the rate of erosion on the seabed by around 30%.This reduction in erosion helps to decrease the formation of plumes.Additionally,when the size of suspended particles increases,it reduces the scale at which they diffuse.Furthermore,the settling velocity of flocs(around 10^(-2) m/s)is much higher that of compared to sediment particles(around 10^(-5) m/s),which effectively reduces the amount of time the plume remains in suspension.
基金Supported by the Marine S&T Fund of Shandong Province for Qingdao Marine Science and Technology Center(No.2022QNLM030004-1)the National Natural Science Foundation of China(Nos.42276153,42030407)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB42020401)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-DQC032)the National Key R&D Program of China(No.2022YFC2804003)。
文摘Deep-sea mining activities can potentially release metals,which pose a toxicological threat to deep-sea ecosystems.Nevertheless,due to the remoteness and inaccessibility of the deep-sea biosphere,there is insufficient knowledge about the impact of metal exposure on its inhabitants.In this study,deep-sea mussel Gigantidas platifrons,a commonly used deep-sea toxicology model organism,was exposed to manganese(100,1000μg/L)or iron(500,5000μg/L)for 7 d,respectively.Manganese and iron were chosen for their high levels of occurrence within deep-sea deposits.Metal accumulation and a battery of biochemical biomarkers related to antioxidative stress in superoxide dismutase(SOD),catalase(CAT),malondialdehyde(MDA);immune function in alkaline phosphatase(AKP),acid phosphatase(ACP);and energy metabolism in pyruvate kinase(PK)and hexokinase(HK)were assessed in mussel gills.Results showed that deep-sea mussel G.platifrons exhibited a high capacity to accumulate Mn/Fe.In addition,most tested biochemical parameters were altered by metal exposure,demonstrating that metals could induce oxidative stress,suppress the immune system,and affect energy metabolism of deep-sea mussels.The integrated biomarker response(IBR)approach indicated that the exposure to Mn/Fe had a negative impact on deep-sea mussels,and Mn demonstrated a more harmful impact on deep-sea mussels than Fe.Additionally,SOD and CAT biomarkers had the greatest impact on IBR values in Mn treatments,while ACP and HK were most influential for the low-and high-dose Fe groups,respectively.This study represents the first application of the IBR approach to evaluate the toxicity of metals on deep-sea fauna and serves as a crucial framework for risk assessment of deep-sea mining-associated metal exposure.
基金supported by the opening fund of State Key Laboratory of Coastal and Offshore Engineering at Dalian University of Technology(No.LP2310)the opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection at Chengdu University of Technology(No.SKLGP2023K001)+2 种基金the Shandong Provincial Key Laboratory of Ocean Engineering with grant at Ocean University of China(No.kloe200301)the National Natural Science Foundation of China(Nos.42022052,42077272 and 52108337)the Science and Technology Innovation Serve Project of Wenzhou Association for Science and Technology(No.KJFW65).
文摘Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures.
基金supported by the Natural Science Foundation of Hainan Province(Grant No.520LH015)the Fundamental Research Funds for the Central Universities and the Major Projects of Strategic Emerging Industries in Shanghai(Grant No.BH3230001).
文摘To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate.
基金financially supported by the National Natural Science Foundation of China(Grant No.51541905)
文摘This paper presents a theoretic implementation method of Morphing Unmanned Submersible Aerial Vehicle (MUSAV), which can both submerge in the water and fly in the air. Two different shapes are put forward so that the vehicle can suit both submergence and flight, considering the tremendous differences between hydrodynamic configuration and aerodynamic configuration of a vehicle. The transition of the two shapes can be achieved by using morphing technology. The water-to-air process, including water-exit, morphing, take-off and steady flight, is analyzed. The hydrodynamic and aerodynamic model of the vehicle exiting the water surface obliquely and then taking off into the air has been founded. The control strategy after morphing is analyzed and the control method is given. Numerical method is used to validate the motion model of the water-exit process. Results of simulations show the validity of the proposed model and the feasibility of MUSAV in theory.
基金supported by the State Key Program of National Natural Science of China "Structural Reliability Analysis on the Spherical Hull of Deep Sea MSs"(Grant No.51439004)the Scientific Innovation Program Project of "Key technology research and experimental validation of deep MS" by the Shanghai Committee of Science and Technology(Grant No.15DZ1207000)
文摘Given the recent success in the development of several submersibles in China, people's interest in the history of submersible development is increasing. This paper presents the history of submersible development in China, which can be briefly divided into three periods. The first one is the early period of hardship(1971–2000). Many prototype submersibles of HOVs, ROVs, and AUVs were developed at this time, but the main achievement was the establishment of special research organizations and the training of research and development personnel. The second period can be regarded as the quick development period(2001–2015). All currently used submersibles were developed during this period. The most remarkable achievement was the successful development of 7000 m-deep manned submersible "Jiaolong." The third period aims to develop 11 000 m submersibles for challenging the full ocean depth(2016–2020). In this period, two unmanned submersibles and two manned submersibles will be the significant indicators of achievement. If this 5-year plan can be successfully completed, China can play a significant role in the investigation of the deepest part of the oceans, namely, the hadal trenches(6500–11 000 m).
基金financially supported the National Natural Science Foundation of China(Grant No.61703118)the National Key Research and Development Program of China(Grant No.2016YFB0501703)+1 种基金Taishan Scholars Climbing Program of Shandong(Grant No.TSPD20161007)International Marine Resources Investigation and Development Program of China Ocean Mineral Resources R&D Association and the Strategic Precursor Program of Chinese Academy of Sciences
文摘China's 7000 m manned submersible JIAOLONG carried out an exploration cruise at the Mariana Trench from June to July 2016. The submersible completed nine manned dives on the north and south area of the Mariana Trench from the depth of 5500 to 6700 m, to investigate the geological, biological and chemical characteristics in the hadal area. During the cruise, JIAOLONG deployed a gas-tight serial sampler to collect the water near the sea bottom regularly. Five days later, the sub located the sampler in another dive and retrieved it successfully from the same location, which is the first time that scientists and engineers finished the high accuracy in-situ deployment and retrieval using a manned submersible with Ultra-Short Base Line (USBL) positioning system at the depth more than 6600 m. In this task, we used not only the USBL system of the manned submersible but also a compound strategy, including five position marks, the sea floor terrain, the depth contour, and the heading of the sub. This paper introduces the compound strategy of the target deployment and retrieval with the practical diving experience of JIAOLONG, and provides a promising technique for other underwater vehicles such as manned submersible or Remote Operated Vehicle (ROV) under similar conditions.
基金financially supported by the National Natural Science Foundation of China (Nos. 51579037, 51609035, 51822901, 31872610)China Postdoctoral Science Foundation (Nos. 2017T100176, 2016M590224)the Science and Technology Development Plan Project of Shandong Province (No. 2014GHY115023)
文摘Submersible fish cages can be submerged under the water to mitigate the negative effects that arise from severe sea conditions and improve the growing environment for the farmed fish. Thus they are increasingly applied in offshore aquaculture. To ensure both safety and economic efficiency of submersible fish cages, it is important to determine the optimum submergence depth. In this study, a series of physical model experiments were conducted to investigate the hydrodynamic performance of a submersible fish cage at various submergence depths(1/6, 1/4, 1/3, and 1/2 of the water depth as well as the floating condition for reference) with a model scale of 1:20. The results of the physical model experiment for the different depths were compared to analyze the effects of submergence depths on the mooring line tension and the movement of the floating collar. The results showed that the mooring line tension and the floating collar movement significantly attenuated with increasing submergence depth. However, the attenuation tendency became stable when the fish cage reached a certain depth. According to the results, 1/3 of water depth was determined as the optimal submergence depth of the fish cages. Deeper submergence depths showed no significant advantage from a perspective of the hydrodynamic characteristics of the fish cage. The determination of the optimum submergence depth is beneficial for the structural design and operation safety of submersible net cages.
文摘The submersible pumping unit is a new type of pumping system for lifting formation fluids from onshore oil wells, and the identification of its working condition has an important influence on oil production. In this paper we proposed a diagnostic method for identifying the working condition of the submersible pumping system. Based on analyzing the working principle of the pumping unit and the pump structure, different characteristics in loading and unloading processes of the submersible linear motor were obtained at different working conditions. The characteristic quantities were extracted from operation data of the submersible linear motor. A diagnostic model based on the support vector machine (SVM) method was proposed for identifying the working condition of the submersible pumping unit, where the inputs of the SVM classifier were the characteristic quantities. The performance and the misjudgment rate of this method were analyzed and validated by the data acquired from an experimental simulation platform. The model proposed had an excellent performance in failure diagnosis of the submersible pumping system. The SVM classifier had higher diagnostic accuracy than the learning vector quantization (LVQ) classifier.
基金This project is financially supported by the National High Technology Research Development Programof China(863Program)(Grant No.2002AA401003)
文摘This paper thoroughly studies a control system with control allocation for a manned submersible in deep sea being developed in China. The proposed control system consists of a neural-network-based direct adaptive controller and a dynamic control allocation module. A control energy cost function is used as the optimization criteria of the control allocation module, and weighted pseudo-inverse is used to find the solution of the control allocation problem. In the presence of bounded unknown disturbance and neural networks approximation error, stability of the closed-loop control system of manned submersible is proved with Lyaponov theory. The feasibility and validity of the proposed control system is further verified through experiments conducted on a semi-physical simulation platform for the manned submersible in deep sea.
基金Supported by the PetroChina Science and Technology Project(2016B-4104)
文摘Submersible electrical motor direct-drive progressing cavity pump (PCP) rodless lifting was studied to solve the traditional rod-drive pump problems, such as rod-tubing wearing, low efficiency and short running time. The theoretical researches and laboratory experiments of key tools such as submersible motor and the construction technology of lifting system were introduced. The field application and economic benefit were analyzed and compared with the traditional rod pumping unit. A new low speed and large torque permanent magnet synchronous motor was developed. This motor was used to drive PCP without gear reducer, which improved the reliability and feasibility. It can run at the speed from 50 to 500 r/min with stepless speed regulation, and it can perform high efficiency and large torque. Besides, other key supporting tools, such as motor protector and flex shaft, were developed. The submersible electrical motor direct- drive PCP technology can be used in a 139.7 mm (5.5 in) casing well, with daily output ranging from 5 to 50 m3. Until now, the technology has been deployed more than 100 wells. The field application results show that it eliminates the rod-tubing wearing and saves electric energy by more than 30% compared with the traditional rod pumping unit. And it also makes the oil produced in a safe and environmental friendly way.
基金supported by the National Natural Science Foundation of China(No.51469013).
文摘In order to study the influence of the wrap angle relating to the space guide vane of a submersible well pump(250QJ125)on the flow field and pump performance,seven possible configurations have been considered(obtained by changing the blade wrap angle while keeping unchanged all the other parameters).Such configurations have been numerically simulated in the framework of a computational model based on the Reynolds time-averaged N-S equations,the RNG k-εturbulence approach and the SIMPLE algorithm.The impact exerted by different wrap angles of the guide vane on the performance of the pump,the internal losses of the guide vane and the flow field distribution in the bladeless area at the guide vane outlet has been assessed via cross-comparison of all these cases.The results show that the wrap angle has a significant influence:the wrap angle with the highest head is different from that with the highest efficiency,and changes in this angle have a more significant effect on the head than efficiency.A moderate raise of the wrap angle can improve the properties of the flow,reduce turbulence losses and enhance the energy conversion rate inside the guide vane.Different wrap angles can also lead to different fluid circulation modes in the bladeless area from guide vane outlet to impeller inlet,while they have a weak influence on the absolute value of the velocity of the fluid entering the impeller.
基金Supported by the National Key Basic Research Program of China(973 Program)(No.2015CB755904)the National Natural Science Foundation of China(No.41276036)。
文摘Using observations in an applied cruise of the submersible Jiaolong,water characteristics,geostrophic transport,and turbulent mixing in abyssal and hadal zones of the southern Yap Trench were studied.The spatial structures of deep water show that the abyssal water is cold,saline,and oxygen rich.The hadal water has very small changes in potential temperature and potential density,and a little decrease in salinity and obvious decrease in oxygen.The isotherm,isopycnal,and isohaline are depressed in abyss over the central trench.The turbulent mixing is enhanced in the near-bottom zone and the hadal water on the trench slope,especially at the steep slope,the dissipation rate and diffusivity is strong,which weakens the stratification.The geostrophic flows move southward in the western region of the trench and northward in the eastern region,indicating cyclonic circulation.In the central region of the trench,the water transport is^1.74 Sv southward.In the hadal zone,the northward and southward transports are balanced.Our analysis suggests that the abyssal water in the southern Yap Trench is from Lower Circumpolar Water(LCPW)and the hadal water seems to be of the isolated local water rather than LCPW.
文摘Electric submersible pumps were widely used in agricultural fields,petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive( VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting,the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation( FFT) was carried out on the pressure signals to convert into frequency domain.From the spectra of pressure pulsation signals,the characteristics of pressure pulsation are obtained for each stage and for various speed settings which were then used to understand its variation with speed and stages.
基金supported by the Program for Excellent University Talents in New Century (NCET-12-0500)the National Natural Science Foundation of China (No.51175484)+2 种基金the Science Foundation of Shandong Province (No.ZR2010EM052)the support of the Project 111 (No.B14028)the Key Ocean Engineering Laboratory of Shandong Province
文摘Submersible buoy systems are widely used for oceanographic research,ocean engineering and coastal defense.Severe sea environment has obvious effects on the dynamics of submersible buoy systems.Huge tension can occur and may cause the snap of cables,especially during the deployment period.This paper studies the deployment dynamics of submersible buoy systems with numerical and experimental methods.By applying the lumped mass approach,a three-dimensional multi-body model of submersible buoy system is developed considering the hydrodynamic force,tension force and impact force between components of submersible buoy system and seabed.Numerical integration method is used to solve the differential equations.The simulation output includes tension force,trajectory,profile and dropping location and impact force of submersible buoys.In addition,the deployment experiment of a simplified submersible buoy model was carried out.The profile and different nodes' velocities of the submersible buoy are obtained.By comparing the results of the two methods,it is found that the numerical model well simulates the actual process and conditions of the experiment.The simulation results agree well with the results of the experiment such as gravity anchor's location and velocities of different nodes of the submersible buoy.The study results will help to understand the conditions of submersible buoy's deployment,operation and recovery,and can be used to guide the design and optimization of the system.