期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Evolution of nC_(16)H_(34)-water-mineral systems in thermal capsules and geological implications for deeply-buried hydrocarbon reservoirs
1
作者 Guang-Hui Yuan Zi-Hao Jin +4 位作者 Ying-Chang Cao Ke-Yu Liu Jon Gluyas Yan-Zhong Wang Ke-Lai Xi 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第2期139-158,共20页
Organic-inorganic interactions between hydrocarbons and most minerals in deeply buried reservoirs remain unclear.In this study,gold capsules and fused silica capillary capsules(FSCCs)with different com-binations of nC... Organic-inorganic interactions between hydrocarbons and most minerals in deeply buried reservoirs remain unclear.In this study,gold capsules and fused silica capillary capsules(FSCCs)with different com-binations of nC_(16)H_(34),water(distilled water,CaCl_(2) water)and minerals(quartz,feldspar,calcite,kaolinite,smectite,and illite)were heated at 340℃ for 3-10 d,to investigate the evolution and reaction pathways of the organic-inorganic interactions in different hot systems.After heating,minerals exhibited little alteration in the anhydrous systems.Mineral alterations,how-ever,occurred obviously in the hydrous systems.Different inorganic components affected nC_(16)H_(34) degra-dation differently.Overall,water promoted the free-radical thermal-cracking reaction and step oxidation reaction but suppressed the free-radical cross-linking reaction.The impact of CaCl_(2) water on the nC_(16)H_(34) degradation was weaker than the distilled water as high Ca^(2+)concentration suppressed the formation of free radicals.The presence of different waters also affects the impact of different minerals on nC_(16)H_(34) degradation,via its impact on mineral alterations.In the anhydrous nC_(16)H_(34)-mineral systems,calcite and clays catalyzed generation of low-molecular-weight(LMW)alkanes,particularly the clays.Quartz,feldspar,and calcite catalyzed generation of high-molecular-weight(HMW)alkanes and PAHs,whereas clays catalyzed the generation of LMW alkanes and mono-bicyclic aromatic hydrocarbons(M-BAHs).In the hydrous nC_(16)H_(34)-distilled water-mineral systems,all minerals but quartz promoted nC_(16)H_(34) degra-dation to generate more LMW alkanes,less HMW alkanes and PAHs.In the nC_(16)H_(34)-CaCl_(2) water-mineral systems,the promotion impact of minerals was weaker than that in the systems with distilled water.This study demonstrated the generation of different hydrocarbons with different fluorescence colors in the different nC_(16)H_(34)-water-mineral systems after heating for the same time,implying that fluorescence colors need to be interpreted carefully in investigation of hydrocarbon charging histories and oil origins in deeply buried reservoirs.Besides,the organic-inorganic interactions in different nC_(16)H_(34)-water-mineral systems proceeded in different pathways at different rates,which likely led to preservation of liquid hydrocarbons at different depth(temperature).Thus,quantitative investigations of the reaction kinetics in different hydrocarbon-water-rock systems are required to improve the prediction of hydrocar-bon evolution in deeply buried hydrocarbon reservoirs. 展开更多
关键词 nC_(16)H_(34)-water-mineral systems Organic-inorganic interactions Hydrocarbon degradation Mineral alteration deeply buried hot reservoirs
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部