The current casting surface defect detection algorithms suffer from poor small target defect recognition and imbalance between detection performance and detection time.An improved algorithmic framework for casting def...The current casting surface defect detection algorithms suffer from poor small target defect recognition and imbalance between detection performance and detection time.An improved algorithmic framework for casting defect detection was proposed based on the DEtection TRansformer(DETR)algorithm.The algorithm takes ResNet with an efficient channel attention(ECA)-Net module as the backbone network.In addition,based on the original algorithm architecture,dynamic anchor boxes,improved multi-scale deformable attention module,and SIoU loss function are introduced to improve the sensitivity of transformer structure to input location information and scale size,and the small target defect detection performance is effectively improved.The recognition performance of the algorithm in a self-built casting defect dataset was studied.The improved DETR algorithm has 97.561% accuracy in recognizing two defects,namely sandinclusion and notch,with the detection rate being improved by 65.854% and 17.073% compared with the original DETR and you only look once(Yolo)-V5,respectively.This algorithm verifies the applicability of the transformer architecture target detection algorithm for casting defect detection tasks and provides new ideas for detecting other similar application scenarios.展开更多
This work is aimed at developing an effective method for defect recognition in thermosonic imaging.The heat mechanism of thermosonic imaging is introduced,and the problem for defect recognition is discussed.For this p...This work is aimed at developing an effective method for defect recognition in thermosonic imaging.The heat mechanism of thermosonic imaging is introduced,and the problem for defect recognition is discussed.For this purpose,defect existing in the inner wall of a metal pipeline specimen and defects embedded in a carbon fiber reinforced plastic(CFRP) laminate are tested.The experimental data are processed by pulse phase thermography(PPT) method to show the phase images at different frequencies,and the characteristic of phase angle vs frequency curve of thermal anomalies and sound area is analyzed.A binary image,which is based on the characteristic value of defects,is obtained by a new recognition algorithm to show the defects.Results demonstrate good defect recognition performance for thermosonic imaging,and the reliability of this technique can be improved by the method.展开更多
A feasible approach for the recognition of silk fabric defects based on wavelet transform and SOM neural network is proposed in this paper, the indispensable processes of which are defect images denoising and enhancem...A feasible approach for the recognition of silk fabric defects based on wavelet transform and SOM neural network is proposed in this paper, the indispensable processes of which are defect images denoising and enhancement, image edge detection, feature extraction and defects identification. Both geometrical and textmal feature parmnete~ are extracted from the edge image and the enhanced defect image, and utilize SOM neural network to recognize the common defects which silk fabrics have, including warplacking, weft-lacking, double weft, loom bars, oil-stains. Experimental resets show the advantages with high identification correctness and high inspection speed.展开更多
Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect i...Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.展开更多
基金the support of National Natural Science Foundation of China(No.51405002)Anhui Provincial Natural Science Foundation(No.2108085ME173)+2 种基金open funds from Anhui Province Key Laboratory of Metallurgical Engineering&Resources Recycling(No.SKF20-05)Opening Project of Engineering Technology Research Center of Anhui Education Department for Energy Saving and Pollutant Control in metallurgical processOpening Project of Anhui Engineering Laboratory for Intelligent Applications and Security of Industrial Internet(Grant No.IASII21-03)for financial support.
文摘The current casting surface defect detection algorithms suffer from poor small target defect recognition and imbalance between detection performance and detection time.An improved algorithmic framework for casting defect detection was proposed based on the DEtection TRansformer(DETR)algorithm.The algorithm takes ResNet with an efficient channel attention(ECA)-Net module as the backbone network.In addition,based on the original algorithm architecture,dynamic anchor boxes,improved multi-scale deformable attention module,and SIoU loss function are introduced to improve the sensitivity of transformer structure to input location information and scale size,and the small target defect detection performance is effectively improved.The recognition performance of the algorithm in a self-built casting defect dataset was studied.The improved DETR algorithm has 97.561% accuracy in recognizing two defects,namely sandinclusion and notch,with the detection rate being improved by 65.854% and 17.073% compared with the original DETR and you only look once(Yolo)-V5,respectively.This algorithm verifies the applicability of the transformer architecture target detection algorithm for casting defect detection tasks and provides new ideas for detecting other similar application scenarios.
基金Joint Funds of the National Natural Science Foundationof China (61079020)
文摘This work is aimed at developing an effective method for defect recognition in thermosonic imaging.The heat mechanism of thermosonic imaging is introduced,and the problem for defect recognition is discussed.For this purpose,defect existing in the inner wall of a metal pipeline specimen and defects embedded in a carbon fiber reinforced plastic(CFRP) laminate are tested.The experimental data are processed by pulse phase thermography(PPT) method to show the phase images at different frequencies,and the characteristic of phase angle vs frequency curve of thermal anomalies and sound area is analyzed.A binary image,which is based on the characteristic value of defects,is obtained by a new recognition algorithm to show the defects.Results demonstrate good defect recognition performance for thermosonic imaging,and the reliability of this technique can be improved by the method.
基金Ministry of Commerce of the People's Republic of China (PRC)
文摘A feasible approach for the recognition of silk fabric defects based on wavelet transform and SOM neural network is proposed in this paper, the indispensable processes of which are defect images denoising and enhancement, image edge detection, feature extraction and defects identification. Both geometrical and textmal feature parmnete~ are extracted from the edge image and the enhanced defect image, and utilize SOM neural network to recognize the common defects which silk fabrics have, including warplacking, weft-lacking, double weft, loom bars, oil-stains. Experimental resets show the advantages with high identification correctness and high inspection speed.
基金supported by the Fund of Forestry 948project(2015-4-52)the Fundamental Research Funds for the Central Universities(2572017DB05)the Natural Science Foundation of Heilongjiang Province(C2017005)
文摘Detection of wood plate surface defects using image processing is a complicated problem in the forest industry as the image of the wood surface contains different kinds of defects. In order to obtain complete defect images, we used convex optimization(CO) with different weights as a pretreatment method for smoothing and the Otsu segmentation method to obtain the target defect area images. Structural similarity(SSIM) results between original image and defect image were calculated to evaluate the performance of segmentation with different convex optimization weights. The geometric and intensity features of defects were extracted before constructing a classification and regression tree(CART) classifier. The average accuracy of the classifier is 94.1% with four types of defects on Xylosma congestum wood plate surface: pinhole, crack,live knot and dead knot. Experimental results showed that CO can save the edge of target defects maximally, SSIM can select the appropriate weight for CO, and the CART classifier appears to have the advantages of good adaptability and high classification accuracy.