期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
SDH-FCOS:An Efficient Neural Network for Defect Detection in Urban Underground Pipelines
1
作者 Bin Zhou Bo Li +2 位作者 Wenfei Lan Congwen Tian Wei Yao 《Computers, Materials & Continua》 SCIE EI 2024年第1期633-652,共20页
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect... Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model. 展开更多
关键词 Urban underground pipelines defect detection SDH-FCOS feature fusion SPPF dual detection heads
下载PDF
A Composite Transformer-Based Multi-Stage Defect Detection Architecture for Sewer Pipes
2
作者 Zifeng Yu Xianfeng Li +2 位作者 Lianpeng Sun Jinjun Zhu Jianxin Lin 《Computers, Materials & Continua》 SCIE EI 2024年第1期435-451,共17页
Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based ... Urban sewer pipes are a vital infrastructure in modern cities,and their defects must be detected in time to prevent potential malfunctioning.In recent years,to relieve the manual efforts by human experts,models based on deep learning have been introduced to automatically identify potential defects.However,these models are insufficient in terms of dataset complexity,model versatility and performance.Our work addresses these issues with amulti-stage defect detection architecture using a composite backbone Swin Transformer.Themodel based on this architecture is trained using a more comprehensive dataset containingmore classes of defects.By ablation studies on the modules of combined backbone Swin Transformer,multi-stage detector,test-time data augmentation and model fusion,it is revealed that they all contribute to the improvement of detection accuracy from different aspects.The model incorporating all these modules achieves the mean Average Precision(mAP)of 78.6% at an Intersection over Union(IoU)threshold of 0.5.This represents an improvement of 14.1% over the ResNet50 Faster Region-based Convolutional Neural Network(R-CNN)model and a 6.7% improvement over You Only Look Once version 6(YOLOv6)-large,the highest in the YOLO methods.In addition,for other defect detection models for sewer pipes,although direct comparison with themis infeasible due to the unavailability of their private datasets,our results are obtained from a more comprehensive dataset and have superior generalization capabilities. 展开更多
关键词 Sewer pipe defect detection deep learning model optimization composite transformer
下载PDF
Defect Detection Model Using Time Series Data Augmentation and Transformation
3
作者 Gyu-Il Kim Hyun Yoo +1 位作者 Han-Jin Cho Kyungyong Chung 《Computers, Materials & Continua》 SCIE EI 2024年第2期1713-1730,共18页
Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal depende... Time-series data provide important information in many fields,and their processing and analysis have been the focus of much research.However,detecting anomalies is very difficult due to data imbalance,temporal dependence,and noise.Therefore,methodologies for data augmentation and conversion of time series data into images for analysis have been studied.This paper proposes a fault detection model that uses time series data augmentation and transformation to address the problems of data imbalance,temporal dependence,and robustness to noise.The method of data augmentation is set as the addition of noise.It involves adding Gaussian noise,with the noise level set to 0.002,to maximize the generalization performance of the model.In addition,we use the Markov Transition Field(MTF)method to effectively visualize the dynamic transitions of the data while converting the time series data into images.It enables the identification of patterns in time series data and assists in capturing the sequential dependencies of the data.For anomaly detection,the PatchCore model is applied to show excellent performance,and the detected anomaly areas are represented as heat maps.It allows for the detection of anomalies,and by applying an anomaly map to the original image,it is possible to capture the areas where anomalies occur.The performance evaluation shows that both F1-score and Accuracy are high when time series data is converted to images.Additionally,when processed as images rather than as time series data,there was a significant reduction in both the size of the data and the training time.The proposed method can provide an important springboard for research in the field of anomaly detection using time series data.Besides,it helps solve problems such as analyzing complex patterns in data lightweight. 展开更多
关键词 defect detection time series deep learning data augmentation data transformation
下载PDF
Printed Circuit Board (PCB) Surface Micro Defect Detection Model Based on Residual Network with Novel Attention Mechanism
4
作者 Xinyu Hu Defeng Kong +2 位作者 Xiyang Liu Junwei Zhang Daode Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期915-933,共19页
Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become o... Printed Circuit Board(PCB)surface tiny defect detection is a difficult task in the integrated circuit industry,especially since the detection of tiny defects on PCB boards with large-size complex circuits has become one of the bottlenecks.To improve the performance of PCB surface tiny defects detection,a PCB tiny defects detection model based on an improved attention residual network(YOLOX-AttResNet)is proposed.First,the unsupervised clustering performance of the K-means algorithm is exploited to optimize the channel weights for subsequent operations by feeding the feature mapping into the SENet(Squeeze and Excitation Network)attention network;then the improved K-means-SENet network is fused with the directly mapped edges of the traditional ResNet network to form an augmented residual network(AttResNet);and finally,the AttResNet module is substituted for the traditional ResNet structure in the backbone feature extraction network of mainstream excellent detection models,thus improving the ability to extract small features from the backbone of the target detection network.The results of ablation experiments on a PCB surface defect dataset show that AttResNet is a reliable and efficient module.In Torify the performance of AttResNet for detecting small defects in large-size complex circuit images,a series of comparison experiments are further performed.The results show that the AttResNet module combines well with the five best existing target detection frameworks(YOLOv3,YOLOX,Faster R-CNN,TDD-Net,Cascade R-CNN),and all the combined new models have improved detection accuracy compared to the original model,which suggests that the AttResNet module proposed in this paper can help the detection model to extract target features.Among them,the YOLOX-AttResNet model proposed in this paper performs the best,with the highest accuracy of 98.45% and the detection speed of 36 FPS(Frames Per Second),which meets the accuracy and real-time requirements for the detection of tiny defects on PCB surfaces.This study can provide some new ideas for other real-time online detection tasks of tiny targets with high-resolution images. 展开更多
关键词 Neural networks deep learning ResNet small object feature extraction PCB surface defect detection
下载PDF
A Simple and Effective Surface Defect Detection Method of Power Line Insulators for Difficult Small Objects
5
作者 Xiao Lu Chengling Jiang +2 位作者 Zhoujun Ma Haitao Li Yuexin Liu 《Computers, Materials & Continua》 SCIE EI 2024年第4期373-390,共18页
Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable... Insulator defect detection plays a vital role in maintaining the secure operation of power systems.To address the issues of the difficulty of detecting small objects and missing objects due to the small scale,variable scale,and fuzzy edge morphology of insulator defects,we construct an insulator dataset with 1600 samples containing flashovers and breakages.Then a simple and effective surface defect detection method of power line insulators for difficult small objects is proposed.Firstly,a high-resolution featuremap is introduced and a small object prediction layer is added so that the model can detect tiny objects.Secondly,a simplified adaptive spatial feature fusion(SASFF)module is introduced to perform cross-scale spatial fusion to improve adaptability to variable multi-scale features.Finally,we propose an enhanced deformable attention mechanism(EDAM)module.By integrating a gating activation function,the model is further inspired to learn a small number of critical sampling points near reference points.And the module can improve the perception of object morphology.The experimental results indicate that concerning the dataset of flashover and breakage defects,this method improves the performance of YOLOv5,YOLOv7,and YOLOv8.In practical application,it can simply and effectively improve the precision of power line insulator defect detection and reduce missing detection for difficult small objects. 展开更多
关键词 Insulator defect detection small object power line deformable attention mechanism
下载PDF
YOLO-DD:Improved YOLOv5 for Defect Detection
6
作者 Jinhai Wang Wei Wang +4 位作者 Zongyin Zhang Xuemin Lin Jingxian Zhao Mingyou Chen Lufeng Luo 《Computers, Materials & Continua》 SCIE EI 2024年第1期759-780,共22页
As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex b... As computer technology continues to advance,factories have increasingly higher demands for detecting defects.However,detecting defects in a plant environment remains a challenging task due to the presence of complex backgrounds and defects of varying shapes and sizes.To address this issue,this paper proposes YOLO-DD,a defect detectionmodel based on YOLOv5 that is effective and robust.To improve the feature extraction process and better capture global information,the vanilla YOLOv5 is augmented with a new module called Relative-Distance-Aware Transformer(RDAT).Additionally,an Information Gap Filling Strategy(IGFS)is proposed to improve the fusion of features at different scales.The classic lightweight attention mechanism Squeeze-and-Excitation(SE)module is also incorporated into the neck section to enhance feature expression and improve the model’s performance.Experimental results on the NEU-DET dataset demonstrate that YOLO-DDachieves competitive results compared to state-of-the-art methods,with a 2.0% increase in accuracy compared to the original YOLOv5,achieving 82.41% accuracy and38.25FPS(framesper second).Themodel is also testedon a self-constructed fabric defect dataset,and the results show that YOLO-DD is more stable and has higher accuracy than the original YOLOv5,demonstrating its stability and generalization ability.The high efficiency of YOLO-DD enables it to meet the requirements of industrial high accuracy and real-time detection. 展开更多
关键词 YOLO-DD defect detection feature fusion attention mechanism
下载PDF
Review of Fabric Defect Detection Based on Computer Vision 被引量:2
7
作者 朱润虎 辛斌杰 +1 位作者 邓娜 范明珠 《Journal of Donghua University(English Edition)》 CAS 2023年第1期18-26,共9页
In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the ov... In textile inspection field,the fabric defect refers to the destruction of the texture structure on the fabric surface.The technology of computer vision makes it possible to detect defects automatically.Firstly,the overall structure of the fabric defect detection system is introduced and some mature detection systems are studied.Then the fabric detection methods are summarized,including structural methods,statistical methods,frequency domain methods,model methods and deep learning methods.In addition,the evaluation criteria of automatic detection algorithms are discussed and the characteristics of various algorithms are analyzed.Finally,the research status of this field is discussed,and the future development trend is predicted. 展开更多
关键词 computer vision fabric defect detection algorithm evaluation textile inspection
下载PDF
Visualization for Explanation of Deep Learning-Based Defect Detection Model Using Class Activation Map 被引量:1
8
作者 Hyunkyu Shin Yonghan Ahn +3 位作者 Mihwa Song Heungbae Gil Jungsik Choi Sanghyo Lee 《Computers, Materials & Continua》 SCIE EI 2023年第6期4753-4766,共14页
Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however... Recently,convolutional neural network(CNN)-based visual inspec-tion has been developed to detect defects on building surfaces automatically.The CNN model demonstrates remarkable accuracy in image data analysis;however,the predicted results have uncertainty in providing accurate informa-tion to users because of the“black box”problem in the deep learning model.Therefore,this study proposes a visual explanation method to overcome the uncertainty limitation of CNN-based defect identification.The visual repre-sentative gradient-weights class activation mapping(Grad-CAM)method is adopted to provide visually explainable information.A visualizing evaluation index is proposed to quantitatively analyze visual representations;this index reflects a rough estimate of the concordance rate between the visualized heat map and intended defects.In addition,an ablation study,adopting three-branch combinations with the VGG16,is implemented to identify perfor-mance variations by visualizing predicted results.Experiments reveal that the proposed model,combined with hybrid pooling,batch normalization,and multi-attention modules,achieves the best performance with an accuracy of 97.77%,corresponding to an improvement of 2.49%compared with the baseline model.Consequently,this study demonstrates that reliable results from an automatic defect classification model can be provided to an inspector through the visual representation of the predicted results using CNN models. 展开更多
关键词 defect detection VISUALIZATION class activation map deep learning EXPLANATION visualizing evaluation index
下载PDF
Faster Metallic Surface Defect Detection Using Deep Learning with Channel Shuffling
9
作者 Siddiqui Muhammad Yasir Hyunsik Ahn 《Computers, Materials & Continua》 SCIE EI 2023年第4期1847-1861,共15页
Deep learning has been constantly improving in recent years,and a significant number of researchers have devoted themselves to the research of defect detection algorithms.Detection and recognition of small and complex... Deep learning has been constantly improving in recent years,and a significant number of researchers have devoted themselves to the research of defect detection algorithms.Detection and recognition of small and complex targets is still a problem that needs to be solved.The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces.During steel strip production,mechanical forces and environmental factors cause surface defects of the steel strip.Therefore,the detection of such defects is key to the production of high-quality products.Moreover,surface defects of the steel strip cause great economic losses to the high-tech industry.So far,few studies have explored methods of identifying the defects,and most of the currently available algorithms are not sufficiently effective.Therefore,this study presents an improved real-time metallic surface defect detection model based on You Only Look Once(YOLOv5)specially designed for small networks.For the smaller features of the target,the conventional part is replaced with a depthwise convolution and channel shuffle mechanism.Then assigning weights to Feature Pyramid Networks(FPN)output features and fusing them,increases feature propagation and the network’s characterization ability.The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time.The precision of the proposed model achieved by mAP@0.5 is 77.5%on the Northeastern University,Dataset(NEU-DET)and 70.18%on the GC10-DET datasets. 展开更多
关键词 defect detection deep learning convolution neural network object detection YOLOv5 shuffleNetv2
下载PDF
A Defect Detection Method for the Primary Stage of Software Development
10
作者 Qiang Zhi Wanxu Pu +1 位作者 Jianguo Ren Zhengshu Zhou 《Computers, Materials & Continua》 SCIE EI 2023年第3期5141-5155,共15页
In the early stage of software development,a software requirements specification(SRS)is essential,and whether the requirements are clear and explicit is the key.However,due to various reasons,there may be a large numb... In the early stage of software development,a software requirements specification(SRS)is essential,and whether the requirements are clear and explicit is the key.However,due to various reasons,there may be a large number of misunderstandings.To generate high-quality software requirements specifications,numerous researchers have developed a variety of ways to improve the quality of SRS.In this paper,we propose a questions extraction method based on SRS elements decomposition,which evaluates the quality of SRS in the form of numerical indicators.The proposed method not only evaluates the quality of SRSs but also helps in the detection of defects,especially the description problem and omission defects in SRSs.To verify the effectiveness of the proposed method,we conducted a controlled experiment to compare the ability of checklist-based review(CBR)and the proposed method in the SRS review.The CBR is a classicmethod of reviewing SRS defects.After a lot of practice and improvement for a long time,CBR has excellent review ability in improving the quality of software requirements specifications.The experimental results with 40 graduate studentsmajoring in software engineering confirmed the effectiveness and advantages of the proposed method.However,the shortcomings and deficiencies of the proposed method are also observed through the experiment.Furthermore,the proposed method has been tried out by engineers with practical work experience in software development industry and received good feedback. 展开更多
关键词 Computer science software engineering requirement engineering software quality defect detection
下载PDF
Research and Application of Log Defect Detection and Visualization System Based on Dry Coupling Ultrasonic Method
11
作者 Yongning Yuan Dong Zhang +4 位作者 Usama Sayed Hao Zhu Jun Wang Xiaojun Yang Zheng Wang 《Journal of Renewable Materials》 EI 2023年第11期3917-3932,共16页
In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system... In order to optimize the wood internal quality detection and evaluation system and improve the comprehensive utilization rate of wood,this paper invented a set of log internal defect detection and visualization system by using the ultrasonic dry coupling agent method.The detection and visualization analysis of internal log defects were realized through log specimen test.The main conclusions show that the accuracy,reliability and practicability of the system for detecting the internal defects of log specimens have been effectively verified.The system can make the edge of the detected image smooth by interpolation algorithm,and the edge detection algorithm can be used to detect and reflect the location of internal defects of logs accurately.The content mentioned above has good application value for meeting the requirement of increasing demand for wood resources and improving the automation level of wood nondestructive testing instruments. 展开更多
关键词 Ultrasonic method log defect detection visualization system dry coupling B-scan pulse transmission method bilinear image interpolation algorithm edge detection algorithm
下载PDF
Deep Learning-Based Model for Defect Detection and Localization on Photovoltaic Panels
12
作者 S.Prabhakaran R.Annie Uthra J.Preetharoselyn 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2683-2700,共18页
The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to ac... The Problem of Photovoltaic(PV)defects detection and classification has been well studied.Several techniques exist in identifying the defects and localizing them in PV panels that use various features,but suffer to achieve higher performance.An efficient Real-Time Multi Variant Deep learning Model(RMVDM)is presented in this article to handle this issue.The method considers different defects like a spotlight,crack,dust,and micro-cracks to detect the defects as well as loca-lizes the defects.The image data set given has been preprocessed by applying the Region-Based Histogram Approximation(RHA)algorithm.The preprocessed images are applied with Gray Scale Quantization Algorithm(GSQA)to extract the features.Extracted features are trained with a Multi Variant Deep learning model where the model trained with a number of layers belongs to different classes of neurons.Each class neuron has been designed to measure Defect Class Support(DCS).At the test phase,the input image has been applied with different operations,and the features extracted passed through the model trained.The output layer returns a number of DCS values using which the method identifies the class of defect and localizes the defect in the image.Further,the method uses the Higher-Order Texture Localization(HOTL)technique in localizing the defect.The pro-posed model produces efficient results with around 97%in defect detection and localization with higher accuracy and less time complexity. 展开更多
关键词 Photovoltaic systems deep learning defect detection CLASSIFICATION LOCALIZATION
下载PDF
A Lightweight Electronic Water Pump Shell Defect Detection Method Based on Improved YOLOv5s
13
作者 Qunbiao Wu Zhen Wang +2 位作者 Haifeng Fang Junji Chen Xinfeng Wan 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期961-979,共19页
For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surf... For surface defects in electronic water pump shells,the manual detection efficiency is low,prone to misdetection and leak detection,and encounters problems,such as uncertainty.To improve the speed and accuracy of surface defect detection,a lightweight detection method based on an improved YOLOv5s method is proposed to replace the traditional manual detection methods.In this method,the MobileNetV3 module replaces the backbone network of YOLOv5s,depth-separable convolution is introduced,the parameters and calculations are reduced,and CIoU_Loss is used as the loss function of the boundary box regression to improve its detection accuracy.A dataset of electronic pump shell defects is established,and the performance of the improved method is evaluated by comparing it with that of the original method.The results show that the parameters and FLOPs are reduced by 49.83%and 61.59%,respectively,compared with the original YOLOv5s model,and the detection accuracy is improved by 1.74%,which is an indication of the superiority of the improved method.To further verify the universality of the improved method,it is compared with the results using the original method on the PASCALVOC2007 dataset,which verifies that it yields better performance.In summary,the improved lightweight method can be used for the real-time detection of electronic water pump shell defects. 展开更多
关键词 Electronic water pump shell surface defect detection lightweight network loss function
下载PDF
Research on Surface Defect Detection Method of E-TPU Midsole Based on Machine Vision 被引量:1
14
作者 Ruizhi Li Fang Tian Shiqiang Chen 《Journal of Computer and Communications》 2020年第11期145-160,共16页
In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper prop... In the industrial production of expanded thermoplastic polyurethane (E-TPU) midsoles, the surface defects still rely on manual inspection at present, and the eligibility criteria are uneven. Therefore, this paper proposes an E-TPU midsole surface defect detection method based on machine vision to achieve automatic detection and defect classification. The proposed method is divided into three parts: image preprocessing, block defect detection, and linear defect detection. Image preprocessing uses RGB three channel self-inspection to identify scorch and color pollution. Block defect detection uses superpixel segmentation and background prior mining to determine holes, impurities, and dirt. Linear defect detection uses Gabor filter and Hough transform to detect indentation and convex marks. After image preprocessing, block defect detection and linear defect detection are simultaneously performed by parallel computing. The false positive rate (FPR) of the proposed method in this paper is 8.3%, the false negatives rate (FNR) of the hole is 4.7%, the FNR of indentation is 2.1%, and the running time does not exceed 1.6 s. The test results show that this method can quickly and accurately detect various defects in the E-TPU midsole. 展开更多
关键词 Midsole Surface defect detection Image Processing Linear defect detection Block defect detection
下载PDF
Rail Internal Defect Detection Method Based on Enhanced Network Structure and Module Design Using Ultrasonic Images
15
作者 Fupei Wu Xiaoyang Xie Weilin Ye 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期277-288,共12页
Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operat... Improving the detection accuracy of rail internal defects and the generalization ability of detection models are not only the main problems in the field of defect detection but also the key to ensuring the safe operation of high-speed trains.For this reason,a rail internal defect detection method based on an enhanced network structure and module design using ultrasonic images is proposed in this paper.First,a data augmentation method was used to extend the existing image dataset to obtain appropriate image samples.Second,an enhanced network structure was designed to make full use of the high-level and low-level feature information in the image,which improved the accuracy of defect detection.Subsequently,to optimize the detection performance of the proposed model,the Mish activation function was used to design the block module of the feature extraction network.Finally,the pro-posed rail defect detection model was trained.The experimental results showed that the precision rate and F1score of the proposed method were as high as 98%,while the model’s recall rate reached 99%.Specifically,good detec-tion results were achieved for different types of defects,which provides a reference for the engineering application of internal defect detection.Experimental results verified the effectiveness of the proposed method. 展开更多
关键词 Ultrasonic detection Rail defects detection Deep learning Enhanced network structure Module design
下载PDF
Wood defect detection method with PCA feature fusion and compressed sensing 被引量:18
16
作者 Yizhuo Zhang Chao Xu +2 位作者 Chao Li Huiling Yu Jun Cao 《Journal of Forestry Research》 SCIE CAS CSCD 2015年第3期745-751,共7页
We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as ... We used principa/component analysis (PCA) and compressed sensing to detect wood defects from wood plate images. PCA makes it possible to reduce data redundancy and feature dimensions and compressed sensing, used as a elas- sifter, improves identification accuracy. We extracted 25 features, including geometry and regional features, gray-scale texture features, and invariant moment features, from wood board images and then integrated them using PCA, and se- lected eight principal components to express defects. After the fusion process, we used the features to construct a data dic- tionary, and realized the classification of defects by computing the optimal solution of the data dictionary in l1 norm using the least square method. We tested 50 Xylosma samples of live knots, dead knots, and cracks. The average detection time with PCA feature fusion and without were 0.2015 and 0.7125 ms, respectively. The original detection accuracy by SOM neural network was 87 %, but after compressed sensing, it was 92 %. 展开更多
关键词 Principal component analysis Compressedsensing Wood board classification defect detection
下载PDF
Simulation Analysis and Experimental Study of Defect Detection Underwater by ACFM Probe 被引量:8
17
作者 李伟 陈国明 +1 位作者 张传荣 刘涛 《China Ocean Engineering》 SCIE EI CSCD 2013年第2期277-282,共6页
This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect... This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system. 展开更多
关键词 ACFM underwater structure defect detection simulation analysis experimental study
下载PDF
Background removal and weld defect detection based on energy distribution of image 被引量:13
18
作者 迟大钊 刚铁 高双胜 《China Welding》 EI CAS 2007年第1期14-18,共5页
The lateral wave in ultrasonic TOFD (time of flight diffraction) image has a tail in transit time, which disturbs the detection and evaluation of shallow weld defect. Meanwhile, the lateral wave and back-wall echo t... The lateral wave in ultrasonic TOFD (time of flight diffraction) image has a tail in transit time, which disturbs the detection and evaluation of shallow weld defect. Meanwhile, the lateral wave and back-wall echo that act as background add redundant data in digital image processing. In order to separate defect wave from lateral wave and prepare the way for following image processing, an algorithm of background removal method named as mean-subtraction is developed. Based on this, an improved method by statistic of the energy distribution in the image is proposed. The results show that by choosing proper threshold value according to the axial energy distribution of the image, the background can be removed automatically and the defect section becomes predominant. Meanwhile, diffractive wave of shallow weld defect can be separated from lateral wave effectively. 展开更多
关键词 time of flight diffraction (TOFD) digital image processing background removal defect detection
下载PDF
Defect detection method based on 2D entropy image segmentation 被引量:4
19
作者 迟大钊 刚铁 《China Welding》 EI CAS 2020年第1期45-49,共5页
In order to improve the work efficiency of non-destructive testing(NDT)and the reliability of NDT results,an automatic method to detect defects in the ultrasonic image was researched.According to the characterization ... In order to improve the work efficiency of non-destructive testing(NDT)and the reliability of NDT results,an automatic method to detect defects in the ultrasonic image was researched.According to the characterization of ultrasonic D-scan image,clutter wave suppression and de-noising were presented firstly.Then,the image is processed by binaryzation using KSW 2 D entropy based on image segmentation method.The results showed that,the global threshold based segmentation method was somewhat ineffective for D-scan image because of under-segmentation.Especially,when the image is big in size,small targets which are composed by a small amount of pixels are often undetected.Whereas,local threshold based image segmentation method is effective in recognizing small defects because it takes local image character into account. 展开更多
关键词 ultrasonic testing defect detection 2D entropy image segmentation
下载PDF
Electromagnetic Tomography System for Defect Detection of High-Speed Rail Wheel 被引量:1
20
作者 Yu Miao Xianglong Liu +4 位作者 Ze Liu Yuanli Yue Jianli Wu Jiwei Huo Yong Li 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期474-483,共10页
A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped... A novel electromagnetic tomography(EMT)system for defect detection of high-speed rail wheel is proposed,which differs from traditional electromagnetic tomography systems in its spatial arrangements of coils.A U-shaped sensor array was designed,and then a simulation model was built with the low frequency electromagnetic simulation software.Three different algorithms were applied to perform image reconstruction,therefore the defects can be detected from the reconstructed images.Based on the simulation results,an experimental system was built and image reconstruction were performed with the measured data.The reconstructed images obtained both from numerical simulation and experimental system indicated the locations of the defects of the wheel,which verified the feasibility of the EMT system and revealed its good application prospect in the future. 展开更多
关键词 electromagnetic tomography(EMT) high-speed rail wheel defect detection image reconstruction
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部