Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale ...Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale parameters of the Gaussian kernel,the multi-scale representation of the original image data could be obtained and used to constitute the multi- variate image,in which each channel could represent a perceptual observation of the original image from different scales.The Multivariate Image Analysis (MIA) techniques were used to extract defect features information.The MIA combined Principal Component Analysis (PCA) to obtain the principal component scores of the multivariate test image.The Q-statistic image, derived from the residuals after the extraction of the first principal component score and noise,could be used to efficiently reveal the surface defects with an appropriate threshold value decided by training images.Experimental results show that the proposed method performs better than the gray histogram-based method.It has less sensitivity to the inhomogeneous of illumination,and has more robustness and reliability of defect detection with lower pseudo reject rate.展开更多
Based on Landau–de Gennes theory and two-dimensional finite-difference iterative method, the spontaneous distortion in hybrid alignment nematic cells with M = ±1/2 disclination lines is investigated by establish...Based on Landau–de Gennes theory and two-dimensional finite-difference iterative method, the spontaneous distortion in hybrid alignment nematic cells with M = ±1/2 disclination lines is investigated by establishing two models. The fine structures of defect cores are described in the order space S^2/Z2. The joint action of elastic anisotropy(L2/L1) and biaxiality of defects induces the spontaneous twist distortion, accompanied by the movement of the defect center to the upper or lower plate. For each model, four mixed defect structures appear with the same energy, which are defined as energetically degenerated quadruple states.展开更多
Equipment has been designed and created for experimental simulation of space environment conditions of Geostationary orbit of the Earth. The following conditions are supported in the vacuum chamber having volume of 1....Equipment has been designed and created for experimental simulation of space environment conditions of Geostationary orbit of the Earth. The following conditions are supported in the vacuum chamber having volume of 1.2 cubic meters: Vacuum 10-5 Torr. (1.3 × 10-3 Pa), electron beam with energy up to 8 MeV, temperatures from -150°C to +150°C and solar ultraviolet radiation. The peculiarity of this equipment is the possibility of analyzing complex simultaneous influence of mentioned above 4 factors on the sample and in-situ direct measurement of sample parameters under irradiation which provides almost real conditions. Silicon single crystals used in space environment were tested in the vacuum chamber and new results were received having scientific and applied interest. It was shown, particularly, that the electro-conductivity of silicon samples has higher value at in-situ condition than ex-situ after irradiation.展开更多
An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a...An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a hyperbolic fractal Rindler space-time leading to the same robust results regarding real energy and dark energy being 4.5% and 95.5% respectively in full agreement with all recent cosmological measurements.展开更多
In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological...In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological balls, and induces a deformation coat in its surrounding. The principles of the interaction of particles with space and through space between themselves are considered in detail. The approach states that real quarks possess only an integer charge (±e) and when moving they periodically change to the monopole state (⇄g) and hence, canonical particles are dynamic dyons. A neutrino emerges as a squeezed quark when it is in a monopole state, or in other words, the quark monopole state (a bubble in the tessellattice) is transferred to the appropriate lepton monopole state (a speck in the tessellattice). The self-mass (a “rest” mass) for each neutrino flavour is calculated. The calculated value of the self-mass for the electron anti-neutrino is 1.22873978 × 10<sup>-36</sup> kg = 0.68927247 eV/c<sup>2</sup>. The concept of neutrino oscillations is revised, and another postulation is proposed, namely, that the transition from lighter to heavier flavors is due to the inelastic scattering of neutrinos on oncoming scatterers. As a result, the neutrino captures the mass defect, becomes heavier, and therefore the transitions V<sub>e</sub>⟶V<sub>μ</sub> and V<sub>μ</sub>⟶V<sub>τ</sub> occur;thus, the number of light neutrinos decreases in the neutrino flux studied.展开更多
基金supported in part by the Natural Science Foundation of China (NSFC) (Grant No:50875240).
文摘Inspired by the coarse-to-fine visual perception process of human vision system,a new approach based on Gaussian multi-scale space for defect detection of industrial products was proposed.By selecting different scale parameters of the Gaussian kernel,the multi-scale representation of the original image data could be obtained and used to constitute the multi- variate image,in which each channel could represent a perceptual observation of the original image from different scales.The Multivariate Image Analysis (MIA) techniques were used to extract defect features information.The MIA combined Principal Component Analysis (PCA) to obtain the principal component scores of the multivariate test image.The Q-statistic image, derived from the residuals after the extraction of the first principal component score and noise,could be used to efficiently reveal the surface defects with an appropriate threshold value decided by training images.Experimental results show that the proposed method performs better than the gray histogram-based method.It has less sensitivity to the inhomogeneous of illumination,and has more robustness and reliability of defect detection with lower pseudo reject rate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11374087 and 11447179)the Key Subject Construction Project of Hebei Province University,China
文摘Based on Landau–de Gennes theory and two-dimensional finite-difference iterative method, the spontaneous distortion in hybrid alignment nematic cells with M = ±1/2 disclination lines is investigated by establishing two models. The fine structures of defect cores are described in the order space S^2/Z2. The joint action of elastic anisotropy(L2/L1) and biaxiality of defects induces the spontaneous twist distortion, accompanied by the movement of the defect center to the upper or lower plate. For each model, four mixed defect structures appear with the same energy, which are defined as energetically degenerated quadruple states.
文摘Equipment has been designed and created for experimental simulation of space environment conditions of Geostationary orbit of the Earth. The following conditions are supported in the vacuum chamber having volume of 1.2 cubic meters: Vacuum 10-5 Torr. (1.3 × 10-3 Pa), electron beam with energy up to 8 MeV, temperatures from -150°C to +150°C and solar ultraviolet radiation. The peculiarity of this equipment is the possibility of analyzing complex simultaneous influence of mentioned above 4 factors on the sample and in-situ direct measurement of sample parameters under irradiation which provides almost real conditions. Silicon single crystals used in space environment were tested in the vacuum chamber and new results were received having scientific and applied interest. It was shown, particularly, that the electro-conductivity of silicon samples has higher value at in-situ condition than ex-situ after irradiation.
文摘An instructive analogy between the deformation of a pinched elastic cylindrical shell and the anti-gravity behind accelerated cosmic expansion is established. Subsequently the entire model is interpreted in terms of a hyperbolic fractal Rindler space-time leading to the same robust results regarding real energy and dark energy being 4.5% and 95.5% respectively in full agreement with all recent cosmological measurements.
文摘In this paper, the submicroscopic deterministic concept developed by the author is applied to the problem of the neutrino mass. A particle appears from space considered as a mathematical lattice of primary topological balls, and induces a deformation coat in its surrounding. The principles of the interaction of particles with space and through space between themselves are considered in detail. The approach states that real quarks possess only an integer charge (±e) and when moving they periodically change to the monopole state (⇄g) and hence, canonical particles are dynamic dyons. A neutrino emerges as a squeezed quark when it is in a monopole state, or in other words, the quark monopole state (a bubble in the tessellattice) is transferred to the appropriate lepton monopole state (a speck in the tessellattice). The self-mass (a “rest” mass) for each neutrino flavour is calculated. The calculated value of the self-mass for the electron anti-neutrino is 1.22873978 × 10<sup>-36</sup> kg = 0.68927247 eV/c<sup>2</sup>. The concept of neutrino oscillations is revised, and another postulation is proposed, namely, that the transition from lighter to heavier flavors is due to the inelastic scattering of neutrinos on oncoming scatterers. As a result, the neutrino captures the mass defect, becomes heavier, and therefore the transitions V<sub>e</sub>⟶V<sub>μ</sub> and V<sub>μ</sub>⟶V<sub>τ</sub> occur;thus, the number of light neutrinos decreases in the neutrino flux studied.