期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent applications of carbon-based composites in defence industry: A review 被引量:7
1
作者 M.M.Harussani S.M.Sapuan +2 位作者 Gohar Nadeem Tahrim Rafin W.Kirubaanand 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1281-1300,共20页
Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and m... Carbon-based composites, including carbon reinforced composites and carbon-matrix composites, in defence technologies have raised a lot of attention due to its significant physical capabilities, superior thermal and mechanical stability, and its eco-friendly nature. Carbon-based composite which incorporating with various carbonaceous materials such as coke, char, black carbon, activated carbon, carbon fibre and other carbon nanomaterials (carbon nanotubes, carbon nanofibres, graphene and graphite) are the greatest viable option for the development of advanced defence technologies. In this review article the characteristics of carbon-based materials and its composites are discussed for their distinct application in defence sectors;aeronautics, maritime, automotive, electronics, energy storage, electromagnetic interference (EMI) shielding and structures. The origin of carbonaceous materials and its production techniques were discussed. Carbon-based composites have a promising future in defence technology, particularly in chemical sensors, drug delivery agents, radar technologies, and nanocomposites due to their low cost, easy availability, flexibility in design and processing. 展开更多
关键词 Carbon materials CHAR CARBON CNT GRAPHENE Composite defence technology
下载PDF
A comprehensive review of radiation effects on solder alloys and solder joints
2
作者 Norliza Ismail Wan Yusmawati Wan Yusoff +3 位作者 Nor Azlian Abdul Manaf Azuraida Amat Nurazlin Ahmad Emee Marina Salleh 《Defence Technology(防务技术)》 SCIE EI CAS 2024年第9期86-102,共17页
In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines r... In the realm of military and defence applications, exposure to radiation significantly challenges the performance and reliability of solder alloys and joints in electronic systems. This comprehensive review examines radiation-induced effects on solder alloys and solder joints in terms of microstructure and mechanical properties. In this paper, we evaluate the existing literature, including experimental studies and fundamental theory, to provide a comprehensive overview of the behavior of solder materials under radiation. A review of the literature highlights key mechanisms that contribute to radiation-induced changes in the microstructure, such as the formation of intermetallic compounds, grain growth,micro-voids and micro-cracks. Radiation is explored as a factor influencing solder alloy hardness,strength, fatigue and ductility. Moreover, the review addresses the challenges and limitations inherent in studying the effects of radiation on solder materials and offers recommendations for future research. It is crucial to understand radiation-induced effects on solder performance to design robust and radiationresistant electronic systems. A review of radiation effects on solder materials and their applications in electronics serves as a valuable resource for researchers, engineers, and practitioners in that field. 展开更多
关键词 defence technology Solder alloy Solder joints Radiation-induced effect Microstructure Mechanical properties
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部